如圖,將腰長為
5
的等腰Rt△ABC(∠C是直角)放在平面直角坐標系中的第二象限,其中點A在y軸上,點B在拋物線y=ax2+ax-2上,點C的坐標為(-1,0).
(1)點A的坐標為______,點B的坐標為______;
(2)拋物線的關(guān)系式為______,其頂點坐標為______;
(3)將三角板ABC繞頂點A逆時針方向旋轉(zhuǎn)90°,到達△AB′C′的位置.請判斷點B′、C′是否在(2)中的拋物線上,并說明理由.
(1)過B作BE⊥x軸于E;
在Rt△AOC中,AC=
5
,OC=1,則OA=2;
故A(0,2);
由于△ACB是等腰直角三角形,則AC=BC,∠ACB=90°;
∴∠BCE=∠CAO=90°-∠ACO,
∴△BCE≌△CAO,
則CE=OA=2,BE=CO=1,
故B(-3,1);
∴A(0,2),B(-3,1).(2分)

(2)由于拋物線經(jīng)過點B(-3,1),則有:
9a-3a-2=1,a=
1
2

∴解析式為y=
1
2
x2+
1
2
x-2
;(3分)
由于y=
1
2
x2+
1
2
x-2
=
1
2
(x+
1
2
)
2
-
17
8
,
故拋物線的頂點為(-
1
2
,-
17
8
).(4分)

(3)如圖,過點B′作B′M⊥y軸于點M,過點B作BN⊥y軸于點N,過點C′作CP⊥y軸于點P;
在Rt△AB′M與Rt△BAN中,
∵AB=AB′,∠AB′M=∠BAN=90°-∠B′AM,
∴Rt△AB′M≌Rt△BAN.
∴B′M=AN=1,AM=BN=3,
∴B′(1,-1);
同理△AC′P≌△CAO,C′P=OA=2,AP=OC=1,
可得點C′(2,1);
將點B′、C′的坐標代入y=
1
2
x2+
1
2
x-2
,
可知點B′、C′在拋物線上.(7分)
(事實上,點P與點N重合)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一家電腦公司推出一款新型電腦,投放市場以來,前兩個月的利潤情況如圖所示,該圖可以近似地看作拋物線的一部分,其中第x月的利潤為y萬元,往后y與x滿足的關(guān)系不變.請結(jié)合圖象解答下列問題:
(1)求拋物線對應(yīng)的二次函數(shù)解析式;
(2)該公司在經(jīng)營此款電腦的過程中,第幾月的利潤最大?最大利潤是多少?
(3)公司打算,從月利潤下降開始,每月對下月的銷售額進行預(yù)測,若下月與該月的利潤差額超過10萬元,則下月就停止銷售該產(chǎn)品,請你預(yù)測該產(chǎn)品持續(xù)銷售的月數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=x2-kx+k-5.
(1)求證:無論k取何實數(shù),此二次函數(shù)的圖象與x軸都有兩個交點;
(2)若此二次函數(shù)圖象的對稱軸為x=1,求它的解析式;
(3)若(2)中的二次函數(shù)的圖象與x軸交于A、B,與y軸交于點C;D是第四象限函數(shù)圖象上的點,且OD⊥BC于H,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知點A(8,0),sin∠ABO=
4
5
,拋物線經(jīng)過點O、A,且頂點在△AOB的外接圓上,則此拋物線的解析式為( 。
A.y=-
1
2
x2+4x
B.y=-
1
8
x2+x
C.y=
1
2
x2-4x
或y=-
1
8
x2+x
D.y=-
1
2
x2+4x
或y=
1
8
x2-x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖是一座拋物線型拱橋,以橋基AB為x軸,AB的中垂線為y軸建立直角坐標系.已知橋基AB的跨度為60米,如果水位從AB處上升5米,就達到警戒線CD處,此時水面CD的寬為30
2
米,求拋物線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進價為2元的粽子的銷售情況.請根據(jù)小麗提供的信息:

(1)請解答小華提出的問題;
(2)能否獲得比800元更多的利潤?若能,請舉例說明;若不能,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知正方形的邊長為x,面積為y
(1)寫出y與x的函數(shù)關(guān)系式;
(2)當面積為25時,正方形的邊長是多少?
(3)畫出此函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某地計劃開鑿一條單向行駛(從正中通過)的隧道,其截面是拋物線拱形ACB,而且能通過最寬3米,最高3.5米的廂式貨車.按規(guī)定,機動車通過隧道時車身距隧道壁的水平距離和鉛直距離最小都是0.5米.為設(shè)計這條能使上述廂式貨車恰好安全通過的隧道,在圖紙上以直線AB為x軸,線段AB的垂直平分線為y軸,建立如圖所示的直角坐標系,求拋物線拱形的表達式、隧道的跨度AB和拱高OC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,用12米長的木方,做一個有一條橫檔的矩形窗子,為使透進的光線最多,選擇窗子的長、寬各為______、______米.

查看答案和解析>>

同步練習(xí)冊答案