(2005•武漢)已知:如圖,△ABC中,∠A=60°,BC為定長(zhǎng),以BC為直徑的⊙O分別交AB、AC于點(diǎn)D、E.連接DE、OE.下列結(jié)論:①BC=2DE;②D點(diǎn)到OE的距離不變;③BD+CE=2DE;④AE為外接圓的切線.其中正確的結(jié)論是( )
A.①②
B.③④
C.①②③
D.①②④
【答案】分析:連接OD,可證明△ODE是等邊三角形,所以①、②正確;根據(jù)已知條件,③不一定成立,錯(cuò)誤;根據(jù)切線的定義,④錯(cuò)誤.
解答:解:連接OD
∵∠A=60°
∴∠B+∠C=120°,
+=240°,
∵∠B+∠C=120°,
∴2=120°,
=60°,
∴∠DOE=60°又OD=OE
∴△ODE是等邊三角形,所以①正確,
則D到OE的長(zhǎng)度是等邊△ODE的高,則一定是一個(gè)定值,因而②正確;
③根據(jù)已知條件,③不一定成立,錯(cuò)誤;
④根據(jù)切線的定義,錯(cuò)誤.
故選A.
點(diǎn)評(píng):綜合運(yùn)用了三角形的內(nèi)角和定理、圓周角定理和等邊三角形的判定和性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

(2005•武漢)已知:如圖,直線交x軸于O1,交y軸于O2,⊙O2與x軸相切于O點(diǎn),交直線O1O2于P點(diǎn),以O(shè)1為圓心,O1P為半徑的圓交x軸于A、B兩點(diǎn),PB交⊙O2于點(diǎn)F,⊙O1的弦BE=BO,EF的延長(zhǎng)線交AB于D,連接PA、PO.
(1)求證:∠APO=∠BPO;
(2)求證:EF是⊙O2的切線;
(3)EO1的延長(zhǎng)線交⊙O1于C點(diǎn),若G為BC上一動(dòng)點(diǎn),以O(shè)1G為直徑作⊙O3交O1C于點(diǎn)M,交O1B于N.下列結(jié)論:①O1M•O1N為定值;②線段MN的長(zhǎng)度不變.只有一個(gè)是正確的,請(qǐng)你判斷出正確的結(jié)論,并證明正確的結(jié)論,以及求出它的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《三角形》(08)(解析版) 題型:解答題

(2005•武漢)已知:如圖,直線交x軸于O1,交y軸于O2,⊙O2與x軸相切于O點(diǎn),交直線O1O2于P點(diǎn),以O(shè)1為圓心,O1P為半徑的圓交x軸于A、B兩點(diǎn),PB交⊙O2于點(diǎn)F,⊙O1的弦BE=BO,EF的延長(zhǎng)線交AB于D,連接PA、PO.
(1)求證:∠APO=∠BPO;
(2)求證:EF是⊙O2的切線;
(3)EO1的延長(zhǎng)線交⊙O1于C點(diǎn),若G為BC上一動(dòng)點(diǎn),以O(shè)1G為直徑作⊙O3交O1C于點(diǎn)M,交O1B于N.下列結(jié)論:①O1M•O1N為定值;②線段MN的長(zhǎng)度不變.只有一個(gè)是正確的,請(qǐng)你判斷出正確的結(jié)論,并證明正確的結(jié)論,以及求出它的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2005•武漢)已知拋物線y=-x2+(m-2)x+3(m+1)交x軸于A(x1,0),B(x2,0),交y軸的正半軸于C點(diǎn),且x1<x2,|x1|>|x2|,OA2+OB2=2OC+1.
(1)求拋物線的解析式;
(2)是否存在與拋物線只有一個(gè)公共點(diǎn)C的直線.如果存在,求符合條件的直線的表達(dá)式;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年湖北省武漢市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•武漢)已知:如圖,直線交x軸于O1,交y軸于O2,⊙O2與x軸相切于O點(diǎn),交直線O1O2于P點(diǎn),以O(shè)1為圓心,O1P為半徑的圓交x軸于A、B兩點(diǎn),PB交⊙O2于點(diǎn)F,⊙O1的弦BE=BO,EF的延長(zhǎng)線交AB于D,連接PA、PO.
(1)求證:∠APO=∠BPO;
(2)求證:EF是⊙O2的切線;
(3)EO1的延長(zhǎng)線交⊙O1于C點(diǎn),若G為BC上一動(dòng)點(diǎn),以O(shè)1G為直徑作⊙O3交O1C于點(diǎn)M,交O1B于N.下列結(jié)論:①O1M•O1N為定值;②線段MN的長(zhǎng)度不變.只有一個(gè)是正確的,請(qǐng)你判斷出正確的結(jié)論,并證明正確的結(jié)論,以及求出它的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年湖北省武漢市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•武漢)已知拋物線y=-x2+(m-2)x+3(m+1)交x軸于A(x1,0),B(x2,0),交y軸的正半軸于C點(diǎn),且x1<x2,|x1|>|x2|,OA2+OB2=2OC+1.
(1)求拋物線的解析式;
(2)是否存在與拋物線只有一個(gè)公共點(diǎn)C的直線.如果存在,求符合條件的直線的表達(dá)式;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案