B
分析:由PA與PB為圓O的兩條切線,根據(jù)切線長定理得到PA=PB,利用等邊對等角得到∠PAB=∠PBA,選項③正確;連接BC,利用弦切角等于夾弧所對的圓周角得到得到∠PAB=∠ACB,故∠PAB不等于∠PCA,選項①錯誤;由PA為圓O的切線,PC為圓O的割線,利用切割線定理得到關系式,即可對②作出判斷;由同弧所對的圓心角等于所對圓周角的2倍,得到∠AOD=2∠ACO,選項④正確,即可得出錯誤選項的個數(shù).
解答:
解:∵PA、PB是⊙O的兩條切線,
∴PA=PB,
∴∠PAB=∠PBA,故選項③正確;
連接BC,AE,可得出∠PAB=∠ACB,
∴∠PAB≠∠PCA,故選項①錯誤;
∵PA為⊙O的切線,PC為⊙O的割線,
∴∠PAE=∠PCA,
又∵∠APE=∠CPA,
∴△APE∽△CPA,
∴
=
,即PA
2=PE•PC,故選項②錯誤;
∵∠AOD與∠ACO都對
,
∴∠AOD=2∠ACO,故選項④正確.
則錯誤的個數(shù)有2個.
故選B.
點評:此題考查了切線的性質(zhì),切割線定理,等邊對等角,圓周角定理,以及相似三角形的判定與性質(zhì),熟練掌握切線的性質(zhì)是解本題的關鍵.