正方形ABCD中,對角線AC、BD交于點O,若AB=2,則△OAB的面積為________.

1
分析:根據(jù)正方形的邊長可以求得對角線AC的長,根據(jù)正方形對角線互相垂直平分的性質(zhì)即可求得OA=OA=,即可求S△OAB
解答:正方形ABCD的邊長AB=2,
則對角線AC=AB,
∵正方形對角線互相垂直平分,
∴OA=OB=,
∴S△OAB=××=1,
故答案為 1.
點評:本題考查了勾股定理在直角三角形中的運用,考查了直角三角形面積的計算,考查了正方形對角線互相垂直平分的性質(zhì),本題中求OA、OB的值是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,邊長為1的正方形ABCD中,以A為圓心,1為半徑作
BD
,將一塊直角三角板的直角頂點P放置在
BD
(不包括端點B、D)上滑動,一條直角邊通過頂點A,另一條直角邊與邊BC相交于點Q,連接PC,并設(shè)PQ=x,以下我們對精英家教網(wǎng)△CPQ進(jìn)行研究.
(1)△CPQ能否為等邊三角形?若能,則求出x的值;若不能,則說明理由;
(2)求△CPQ周長的最小值;
(3)當(dāng)△CPQ分別為銳角三角形、直角三角形和鈍角三角形時分別求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面材料:
鏡面對稱:鏡前的物體與其在鏡中的像關(guān)于鏡面對稱
①如圖1,如果桌面上有一個用火柴擺出的等式,而你從前方墻上的鏡子中看見的是如下式子:
那么你能立即對桌面上等式的正確性做出判斷嗎?
 

②如圖2,鏡前有黑、白兩球,據(jù)說如果你用白球瞄準(zhǔn)紅球在鏡中的像,擊出的白球就能經(jīng)鏡面反彈擊中黑球.你能說出其中的道理嗎?
 

如果你有兩面互相垂直的鏡子,你想讓擊出的白球先后經(jīng)兩個鏡面反彈,然后仍能擊 中黑球,那么你應(yīng)該怎樣瞄準(zhǔn)?請仿照圖3畫出白球的運動的路線圖.
③請利用軸對稱解決下面問題:
如圖4,在正方形ABCD中,AB=4cm,點P是AC上一動點,E是DC的中點,PD+PE的最小值為
 
cm.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•徐州)如圖,在正方形ABCD中,E是CD的中點,點F在BC上,且FC=
1
4
BC.圖中相似三角形共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•隨州)如圖,正方形ABCD中,AB=3,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG,CF.下列結(jié)論:①點G是BC中點;②FG=FC;③S△FGC=
9
10

其中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•山西模擬)問題背景  某課外學(xué)習(xí)小組在一次學(xué)習(xí)研討中,得到如下命題:
①如圖1,在正三角形ABC中,M、N分別是AC、AB上的點,BM與CN相交于點O,若∠BON=60°,則BM=CN.
②如圖2,在正方形ABCD中,M、N分別是CD、AD上的點,BM與CN相交于點O,若∠BON=90°,則BM=CN.
然后運用類比的思想提出了如下的命題:
③如圖3,在正五邊形ABCDE中,M、N分別是CD、DE上的點,BM與CN相交于點O,若∠BON=108°,則BM=CN.

任務(wù)要求
(1)請你對命題③進(jìn)行證明;
(2)請你繼續(xù)完成下面的探索:如圖4,在五邊形ABCDE中,M、N分別是DE、AE上的點,BM與CN相交于點O,當(dāng)∠BON=108°時,請問結(jié)論BM=CN是否還成立?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案