有一種等腰直角三角形紙片,以它的對(duì)稱軸為折痕,將三角形對(duì)折,得到還是等腰直角三角形(如圖),依照上述方法將原等腰三角形折疊四次,所得小等腰直角三角形的面積是原等腰三角形面積的

[  ]

A.
B.
C.
D.
答案:D
解析:

每對(duì)折一次,面積為原來(lái)的一半,折疊四次就是原面積的,選D。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)△ABC是一張等腰直角三角形紙板,∠C=90°,AC=BC=2,
(1)要在這張紙板中剪出一個(gè)盡可能大的正方形,有甲、乙兩種剪法(如圖1),比較甲、乙兩種剪法,哪種剪法所得的正方形面積大?請(qǐng)說(shuō)明理由.
(2)圖1中甲種剪法稱為第1次剪取,記所得正方形面積為s1;按照甲種剪法,在余下的△ADE和△BDF中,分別剪取正方形,得到兩個(gè)相同的正方形,稱為第2次剪取,并記這兩個(gè)正方形面積和為s2(如圖2),則s2=
 
;再在余下的四個(gè)三角形中,用同樣方法分別剪取正方形,得到四個(gè)相同的正方形,稱為第3次剪取,并記這四個(gè)正方形面積和為s3,繼續(xù)操作下去…,則第10次剪取時(shí),s10=
 
;
(3)求第10次剪取后,余下的所有小三角形的面積之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

△ABC是一張等腰直角三角形紙板,∠C=90°,AC=BC=2,要在這張紙板中剪出一個(gè)盡可能大的正方形,有甲、乙兩種剪法如圖所示,甲種剪法得到正方形ECFD的面積記為S1,乙種剪法得到正方形QPNM的面積記為S2,比較甲、乙兩種剪法,哪種剪法所得的正方形面積更大?下面說(shuō)法正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•衢州)△ABC是一張等腰直角三角形紙板,∠C=Rt∠,AC=BC=2,
(1)要在這張紙板中剪出一個(gè)盡可能大的正方形,有甲、乙兩種剪法(如圖1),比較甲、乙兩種剪法,哪種剪法所得的正方形面積大?請(qǐng)說(shuō)明理由.
(2)圖1中甲種剪法稱為第1次剪取,記所得正方形面積為s1;按照甲種剪法,在余下的△ADE和△BDF中,分別剪取正方形,得到兩個(gè)相同的正方形,稱為第2次剪取,并記這兩個(gè)正方形面積和為s2(如圖2),則s2=;再在余下的四個(gè)三角形中,用同樣方法分別剪取正方形,得到四個(gè)相同的正方形,稱為第3次剪取,并記這四個(gè)正方形面積和為s3,繼續(xù)操作下去…,則第10次剪取時(shí),s10=;
(3)求第10次剪取后,余下的所有小三角形的面積之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011---2012學(xué)年浙江省九年級(jí)期中數(shù)學(xué)卷 題型:解答題

△ABC是一張等腰直角三角形紙板,∠C=Rt∠,AC=BC=2,

1.要在這張紙板中剪出一個(gè)盡可能大的正方形,有甲、乙兩種剪法(如圖1),比較甲.乙兩種剪法,哪種剪法所得的正方形面積大?請(qǐng)說(shuō)明理由。

2.圖1中甲種剪法稱為第1次剪取,記所得正方形面積為;按照甲種剪法,在余下的△ADE和△BDF中,分別剪取正方形,得到兩個(gè)相同的正方形,稱為第2次剪取,并記這兩個(gè)正方形面積和為(如圖2),則;再在余下的四個(gè)三角形中,用同樣方法分別剪取正方形,得到四個(gè)相同的正方形,稱為第3次剪取,并記這四個(gè)正方形面積和為,繼續(xù)操作下去……,則第10次剪取時(shí),;

3.求第10次剪取后,余下的所有小三角形的面積之和

 

查看答案和解析>>

同步練習(xí)冊(cè)答案