如圖,在△ABC中,AB=AC,∠B=36°,∠ADE=∠AED=2∠EAD,則圖中等腰三角形共有( 。
分析:根據(jù)等邊對等角求出∠C,再根據(jù)三角形的內(nèi)角和定理列式求出∠ADE,∠AED,∠EAD的度數(shù),然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠BAD,∠CAE的度數(shù),從而得到相等的角,根據(jù)相等的角找出等腰三角形即可得解.
解答:解:∵AB=AC,∠B=36°,
∴∠C=∠B=36°,
∵∠ADE=∠AED=2∠EAD,
∴在△ADE中,∠ADE+∠AED+∠EAD=2∠EAD+2∠EAD+∠EAD=5∠EAD=180°,
解得∠EAD=36°,
∠ADE=∠AED=2×36°=72°,
∴∠BAD=∠ADE-∠B=72°-36°=36°,
∠CAE=∠AED-∠C=72°-36°=36°,
∴∠BAE=∠CAD=36°+36°=72°,
等腰三角形有:△ABD、△ADE、△ACE、△ABE、△ACD、△ABC共6個.
故選D.
點評:本題考查了等腰三角形的判定與性質(zhì),求出各角的度數(shù)相等,然后得到相等的角是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案