已知:如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E為BC邊上一點,以BE為邊作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同側(cè).

(1)當正方形的頂點F恰好落在對角線AC上時,求BE的長;

(2)將(1)問中的正方形BEFG沿BC向右平移,記平移中的正方形BEFC為正方形B′EFG,當點E與點C重合時停止平移.設(shè)平移的距離為t,正方形B′EFG的邊EF與AC交于點M,連接B′D,B′M,DM,是否存在這樣的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,請說明理由;

(3)在(2)問的平移過程中,設(shè)正方形B′EFG與△ADC重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式以及自變量t的取值范圍.

 

【答案】

解:(1)如圖①,

設(shè)正方形BEFG的邊長為x,

則BE=FG=BG=x,

∵AB=3,BC=6,

∴AG=AB﹣BG=3﹣x,

∵GF∥BE,

∴△AGF∽△ABC,

,

,

解得:x=2,

即BE=2;

(2)存在滿足條件的t,

理由:如圖②,過點D作DH⊥BC于H,

則BH=AD=2,DH=AB=3,

由題意得:BB′=HE=t,HB′=|t﹣2|,EC=4﹣t,

在Rt△B′ME中,B′M2=ME2+B′E2=22+(2﹣t)2=t2﹣2t+8,

∵EF∥AB,

∴△MEC∽△ABC,

,即,

∴ME=2﹣t,

在Rt△DHB′中,B′D2=DH2+B′H2=32+(t﹣2)2=t2﹣4t+13,

過點M作MN⊥DH于N,

則MN=HE=t,NH=ME=2﹣t,

∴DN=DH﹣NH=3﹣(2﹣t)=t+1,

在Rt△DMN中,DM2=DN2+MN2=t2+t+1,

(Ⅰ)若∠DB′M=90°,則DM2=B′M2+B′D2,

t2+t+1=(t2﹣2t+8)+(t2﹣4t+13),

解得:t=

(Ⅱ)若∠B′MD=90°,則B′D2=B′M2+DM2

即t2﹣4t+13=(t2﹣2t+8)+(t2+t+1),

解得:t1=﹣3+,t2=﹣3﹣(舍去),

∴t=﹣3+

(Ⅲ)若∠B′DM=90°,則B′M2=B′D2+DM2,

即:t2﹣2t+8=(t2﹣4t+13)+(t2+t+1),

此方程無解,

綜上所述,當t=或﹣3+時,△B′DM是直角三角形;

(3)①如圖③,當F在CD上時,EF:DH=CE:CH,

即2:3=CE:4,

∴CE=,

∴t=BB′=BC﹣B′E﹣EC=6﹣2﹣=,

∵ME=2﹣t,

∴FM=t,

當0≤t≤時,S=SFMN=×t×t=t2,

②當G在AC上時,t=2,

∵EK=EC•tan∠DCB=EC•=(4﹣t)=3﹣t,

∴FK=2﹣EK=t﹣1,

∵NL=AD=

∴FL=t﹣,

∴當<t≤2時,S=SFMN﹣SFKL=t2(t﹣)(t﹣1)=﹣t2+t﹣

③如圖⑤,當G在CD上時,B′C:CH=B′G:DH,

即B′C:4=2:3,

解得:B′C=,

∴EC=4﹣t=B′C﹣2=,

∴t=,

∵B′N=B′C=(6﹣t)=3﹣t,

∵GN=GB′﹣B′N=t﹣1,

∴當2<t≤時,S=S梯形GNMF﹣SFKL=×2×(t﹣1+t)﹣(t﹣)(t﹣1)=﹣t2+2t﹣,

④如圖⑥,當<t≤4時,

∵B′L=B′C=(6﹣t),EK=EC=(4﹣t),B′N=B′C=(6﹣t)EM=EC=(4﹣t),

S=S梯形MNLK=S梯形B′EKL﹣S梯形B′EMN=﹣t+

綜上所述:

當0≤t≤時,S=t2,

<t≤2時,S=﹣t2+t﹣;

當2<t≤時,S=﹣t2+2t﹣,

<t≤4時,S=﹣t+

【解析】(1)首先設(shè)正方形BEFG的邊長為x,易得△AGF∽△ABC,根據(jù)相似三角形的對應(yīng)邊成比例,即可求得BE的長;

(2)首先利用△MEC∽△ABC與勾股定理,求得B′M,DM與B′D的平方,然后分別從若∠DB′M=90°,則DM2=B′M2+B′D2,若∠DB′M=90°,則DM2=B′M2+B′D2,若∠B′DM=90°,則B′M2=B′D2+DM2去分析,即可得到方程,解方程即可求得答案;

(3)分別從當0≤t≤時,當<t≤2時,當2<t≤時,當<t≤4時去分析求解即可求得答案.

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:2011年河南省周口市初一下學(xué)期相交線與平行線專項訓(xùn)練 題型:解答題

如圖,以Rt△ABO的直角頂點O為原點,OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標系.已知OA=4,OB=3,一動點P從O出發(fā)沿OA方向,以每秒1個

單位長度的速度向A點勻速運動,到達A點后立即以原速沿AO返回;點Q從A點出發(fā)

沿AB以每秒1個單位長度的速度向點B勻速運動.當Q到達B時,P、Q兩點同時停止

運動,設(shè)P、Q運動的時間為t秒(t>0).

(1) 試求出△APQ的面積S與運動時間t之間的函數(shù)關(guān)系式;

(2) 在某一時刻將△APQ沿著PQ翻折,使得點A恰好落在AB邊的點D處,如圖①.

求出此時△APQ的面積.

(3) 在點P從O向A運動的過程中,在y軸上是否存在著點E使得四邊形PQBE為等腰梯

形?若存在,求出點E的坐標;若不存在,請說明理由.

(4) 伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB-BO-OP于點F. 當DF經(jīng)過原點O時,請直接寫出t的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年河南省周口市初一下學(xué)期平移專項訓(xùn)練 題型:解答題

如圖,以Rt△ABO的直角頂點O為原點,OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標系.已知OA=4,OB=3,一動點P從O出發(fā)沿OA方向,以每秒1個

單位長度的速度向A點勻速運動,到達A點后立即以原速沿AO返回;點Q從A點出發(fā)

沿AB以每秒1個單位長度的速度向點B勻速運動.當Q到達B時,P、Q兩點同時停止

運動,設(shè)P、Q運動的時間為t秒(t>0).

(1) 試求出△APQ的面積S與運動時間t之間的函數(shù)關(guān)系式;

(2) 在某一時刻將△APQ沿著PQ翻折,使得點A恰好落在AB邊的點D處,如圖①.

求出此時△APQ的面積.

(3) 在點P從O向A運動的過程中,在y軸上是否存在著點E使得四邊形PQBE為等腰梯

形?若存在,求出點E的坐標;若不存在,請說明理由.

(4) 伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB-BO-OP于點F. 當DF經(jīng)過原點O時,請直接寫出t的值.

 

查看答案和解析>>

同步練習冊答案