如圖,已知A、B、C、D在同一個圓上,BC=CD,AC與BD交于E,若AC=8,CD=4,且線段BE、ED為正整數(shù),則BD=________.

7
分析:根據(jù)已知條件,易證△ABC∽△BEC,所以BC2=CE•AC,即可求得EC=2,AE=6,利用相交弦定理,可以確定BE•DE=12,又線段BE、ED為正整數(shù),且在△BCD中,BC+CD>BE+DE,所以可得BE=3、DE=4或BE=4、DE=3,所以BD=7.
解答:∵BC=CD,
∴∠BAC=∠DAC,
∵∠DBC=∠DAC,
∴∠BAC=∠DBC,
又∵∠BCE=∠ACB,
∴△ABC∽△BEC,
∴BC2=CE•AC,
∵AC=8,CD=4,
∴EC=2,AE=6,
由相交弦定理得,BE•DE=AE•EC,
即BE•DE=12,
又線段BE、ED為正整數(shù),
且在△BCD中,BC+CD>BE+DE,
所以可得BE=3、DE=4或BE=4、DE=3,
所以BD=BE+DE=7.
故答案為:7.
點評:本題考查了相交弦定理,即“圓內(nèi)兩弦相交于圓內(nèi)一點,各弦被這點所分得的兩線段的長的乘積相等”.熟記并靈活應(yīng)用定理是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC內(nèi)接于⊙O,過A作⊙O的切線,與BC的延長線交于D,且AD=
3
+1
,CD精英家教網(wǎng)=2,∠ADC=30°
(1)AC與BC的長;
(2)求∠ABC的度數(shù);
(3)求弓形AmC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

30、如圖,已知直線a,b與直線c相交,下列條件中不能判定直線a與直線b平行的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

40、尺規(guī)作圖:如圖,已知直線BC及其外一點P,利用尺規(guī)過點P作直線BC的平行線.(用兩種方法,不要求寫作法,但要保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:DE∥BC,AB=14,AC=18,AE=10,則AD的長為(  )
A、
9
70
B、
70
9
C、
5
126
D、
126
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,已知直線AB∥CD,∠1=50°,則∠2=
50
度.

查看答案和解析>>

同步練習(xí)冊答案