如圖,已知AB∥CD,C在D的右側(cè),BE平分∠ABC,DE平分∠ADC,BE、DE所在直線交于點(diǎn)E.∠ADC=70°.
(1)求∠EDC的度數(shù);
(2)若∠ABC=n°,求∠BED的度數(shù)(用含n的代數(shù)式表示);
(3)將線段BC沿DC方向平移, 使得點(diǎn)B在點(diǎn)A的右側(cè),其他條件不變,若∠ABC=n°,求∠BED的度數(shù)(用含n的代數(shù)式表示).
(1)35°;(2)n°+35°;(3)215°-n°.
解析試題分析:(1)根據(jù)角平分線的性質(zhì)結(jié)合∠ADC=70°即可求得結(jié)果;
(2)過(guò)點(diǎn)E作EF∥AB,即可得到AB∥CD∥EF,從而可得∠ABE=∠BEF,∠CDE=∠DEF,再根據(jù)角平分線的性質(zhì)可得∠ABE=∠ABC=n°,∠CDE=∠ADC=35°,即可求得結(jié)果;
(3)過(guò)點(diǎn)E作EF∥AB,根據(jù)角平分線的性質(zhì)可得∠ABE=∠ABC=n°,∠CDE=∠ADC=35°,再根據(jù)平行線的性質(zhì)可得∠BEF的度數(shù),從而求得結(jié)果.
(1)∵DE平分∠ADC,∠ADC=70°,
∴∠EDC=∠ADC=×70°=35°;
(2)過(guò)點(diǎn)E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,
∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°,
∴∠BED=∠BEF+∠DEF=n°+35°;
(3)過(guò)點(diǎn)E作EF∥AB
∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=80°
∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°
∵AB∥CD,
∴AB∥CD∥EF,
∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=35°,
∴∠BED=∠BEF+∠DEF=180°-n°+35°=215°-n°.
考點(diǎn):平行線的性質(zhì),角平分線的性質(zhì)
點(diǎn)評(píng):本題知識(shí)點(diǎn)較多,綜合性強(qiáng),難度較大,是中考常見(jiàn)題,正確作出輔助線是解題關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com