【題目】如圖,小瑩在數(shù)學(xué)綜合實(shí)踐活動(dòng)中,利用所學(xué)的數(shù)學(xué)知識(shí)對(duì)某小區(qū)居民樓AB的高度進(jìn)行測(cè)量.先測(cè)得居民樓ABCD之間的距離AC35m,后站在M點(diǎn)處測(cè)得居民樓CD的頂端D的仰角為45°.居民樓AB的頂端B的仰角為55°.已知居民樓CD的高度為16.6m,小瑩的觀測(cè)點(diǎn)N距地面1.6m.求居民樓AB的高度(精確到1m).(參考數(shù)據(jù):sin55°0.82cos55°0.57,tan55°1.43

【答案】約為30m

【解析】

過(guò)點(diǎn)NEFACAB于點(diǎn)E,交CD于點(diǎn)F,可得AE=MN=CF=1.6EF=AC=35,再根據(jù)銳角三角函數(shù)可得BE的長(zhǎng),進(jìn)而可得AB的高度.

解:過(guò)點(diǎn)NEFACAB于點(diǎn)E,交CD于點(diǎn)F

AEMNCF1.6,EFAC35,∠BEN=∠DFN90°,

ENAMNFMC,

DFCDCF16.61.615

RtDFN中,∵∠DNF45°,

NFDF15

ENEFNF351520

RtBEN中,∵tanBNE,

BEEN·tanBNE20×tan55°≈20×1.4328.6°

ABBEAE28.61.6≈30

答:居民樓AB的高度約為30m

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是正方形ABCD的對(duì)角線,BC=4,邊BC在其所在的直線上平移,平移后得到的線段記為PQ,連接PA、QD,并過(guò)點(diǎn)QQO⊥BD,垂足為O,連接OA、OP

1)請(qǐng)直接寫出線段BC在平移過(guò)程中,四邊形APQD是什么四邊形?

2)請(qǐng)判斷OA、OP之間的數(shù)量關(guān)系和位置關(guān)系,并利用圖1加以證明.

3)在平移變換過(guò)程中,設(shè)y=SOPB,BP=x(0≤x≤4),求yx之間的函數(shù)關(guān)系式,并求出y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O是△ABCAB邊上一點(diǎn),以點(diǎn)O為圓心,OA的長(zhǎng)為半徑作⊙O,⊙O恰好經(jīng)過(guò)點(diǎn)C,且與邊BC,AB分別交于E,F兩點(diǎn).連接AE,過(guò)點(diǎn)E作⊙O的切線,交線段BF于點(diǎn)M,交AC的延長(zhǎng)線于點(diǎn)N,且EM=BMEB=AO

1)求的度數(shù);

2)求證:

3)若,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:對(duì)于已知的兩個(gè)函數(shù),任取自變量的一個(gè)值,當(dāng)時(shí),它們對(duì)應(yīng)的函數(shù)值相等;當(dāng)時(shí),它們對(duì)應(yīng)的函數(shù)值互為相反數(shù),我們稱這樣的兩個(gè)函數(shù)互為相關(guān)函數(shù).例如:正比例函數(shù),它的相關(guān)函數(shù)為.

1)已知點(diǎn)在一次函數(shù)的相關(guān)函數(shù)的圖像上,求的值;

2)已知二次函數(shù).

①當(dāng)點(diǎn)在這個(gè)函數(shù)的相關(guān)函數(shù)的圖像上時(shí),求的值;

②當(dāng)時(shí),求函數(shù)的相關(guān)函數(shù)的最大值和最小值.

3)在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)分別為、,連結(jié).直接寫出線段與二次函數(shù)的相關(guān)函數(shù)的圖像有兩個(gè)公共點(diǎn)時(shí)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,將繞點(diǎn)旋轉(zhuǎn)得到,使點(diǎn)的對(duì)應(yīng)點(diǎn)落在上,在上取點(diǎn),使,那么點(diǎn)的距離等于( ).

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線x軸交于A、D兩點(diǎn),與y軸交于點(diǎn)B,四邊形OBCD是矩形,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(0,4),已知點(diǎn)Em,0)是線段DO上的動(dòng)點(diǎn),過(guò)點(diǎn)EPE⊥x軸交拋物線于點(diǎn)P,交BC于點(diǎn)G,交BD于點(diǎn)H

1)求該拋物線的解析式;

2)當(dāng)點(diǎn)P在直線BC上方時(shí),請(qǐng)用含m的代數(shù)式表示PG的長(zhǎng)度;

3)在(2)的條件下,是否存在這樣的點(diǎn)P,使得以PB、G為頂點(diǎn)的三角形與△DEH相似?若存在,求出此時(shí)m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】昌云中學(xué)計(jì)劃為地理興趣小組購(gòu)買大、小兩種地球儀,若購(gòu)買1個(gè)大地球儀和3個(gè)小地球儀需要136元;若購(gòu)買2個(gè)大地球儀和1個(gè)小地球儀需要132元.

1)求每個(gè)大地球儀和每個(gè)小地球儀各多少元;

2)昌云中學(xué)決定購(gòu)買以上兩種地球儀共30個(gè),總費(fèi)用不超過(guò)960元,那么昌云中學(xué)最多可以購(gòu)買多少個(gè)大地球儀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D是射線BC上的一定點(diǎn),點(diǎn)P是線段AB上一動(dòng)點(diǎn),連接PD,作BQ垂直PD,交直線PD于點(diǎn)Q.小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)線段PBPD,BQ的長(zhǎng)度之間的關(guān)系進(jìn)行了探究.下面是小騰的探究過(guò)程,請(qǐng)補(bǔ)充完整:

1)對(duì)于點(diǎn)PAB上的不同位置,畫圖、測(cè)量,得到了線段PB,PDBQ的長(zhǎng)度的幾組值,如表:

位置1

位置2

位置3

位置4

位置5

位置6

位置7

BP/cm

0.00

1.00

2.00

3.00

4.00

5.00

6.00

PD/cm

2.00

1.22

0.98

1.56

2.43

3.38

4.35

BQ/cm

0.00

0.78

1.94

1.82

1.56

1.41

1.31

PB,PD,BQ的長(zhǎng)度這三個(gè)量中,確定   的長(zhǎng)度是自變量,   的長(zhǎng)度和   的長(zhǎng)度都是這個(gè)自變量的函數(shù);

2)在同一平面直角坐標(biāo)系xOy中,畫出(1)中所確定的函數(shù)的圖象;

3)結(jié)合函數(shù)圖象,解決問(wèn)題:當(dāng)PDBQ時(shí),PB長(zhǎng)度范圍是   cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖一,菱形與菱形的頂點(diǎn)重合,點(diǎn)在對(duì)角線上,且.

1)問(wèn)題發(fā)現(xiàn):

的值為________;

2)探究與證明:

將菱形繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)角(),如圖二所示,試探究線段之間的數(shù)量關(guān)系,并說(shuō)明理由;

3)拓展與運(yùn)用:

菱形在旋轉(zhuǎn)過(guò)程中,當(dāng)點(diǎn),三點(diǎn)在一條直線上時(shí),如圖三所示,連接并延長(zhǎng),交于點(diǎn),若,,則的長(zhǎng)為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案