如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點,與y軸交于點C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點P,使△PAB的面積等于△ABC的面積,若存在,求出點P的坐標,若不存在,請說明理由.
(4)點Q是直線BC上的一個動點,若△QOB為等腰三角形,請寫出此時點Q的坐標.(可直接寫出結(jié)果)

【答案】分析:(1)已知了拋物線上三點的坐標,可用待定系數(shù)法求出拋物線的解析式.
(2)已知了B、C的坐標可用待定系數(shù)法求出直線BC的解析式.
(3)由于三角形ABC和三角形PAB的面積相等,根據(jù)等底三角形的面積比等于高的比,可得出P點縱坐標的絕對值.可將其代入拋物線的解析式中即可求出P點的坐標.
(4)本題分三種情況,如下圖:
①OQ=QB,此時Q在OB的垂直平分線上,因此Q點橫坐標為B點橫坐標的一半,然后可代入直線BC的解析式中求出Q點坐標.
②OQ=OB,此時可根據(jù)直線BC的解析式設出Q點坐標,然后用坐標系兩點間距離公式表示出OQ的長,然后根據(jù)OB的長求出Q點坐標.
③OB=BQ,解法同②.
解答:解:(1)設拋物線的解析式為y=a(x+1)(x-4),
已知拋物線過C(0,3),則有:
3=a(0+1)(0-4),a=-
∴拋物線的解析式為y=-x2+x+3

(2)設直線BC的解析式為y=kx+3,
已知直線BC過B(4,0),則有:
4k+3=0,k=-
∴直線BC的函數(shù)解析式為y=x+3

(3)存在一點P,使△PAB的面積等于△ABC的面積
∵△ABC的底邊AB上的高為3
設△PAB的高為h,則|h|=3,則點P的縱坐標為3或-3
∴當3=-x2+x+3時,
得x=0,x=3;
∴點P的坐標為(0,3),(3,3),而點(0,3)與C點重合,故舍去.
當-3=-x2+x+3,
得x=,x=
∴點P的坐標為:P1(3,3),P2,-3),P3,-3)

(4)Q1(2,),Q2,),Q3,),Q4,).
點評:本題考查了一次函數(shù)及二次函數(shù)解析式的確定、圖形面積的求法、等腰三角形的判定等知識.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于點A(-2,0),B(4,0),與y軸交于點C(0,8).
(1)求拋物線的解析式及其頂點D的坐標;
(2)設直線CD交x軸于點E.在線段OB的垂直平分線上是否存在點P,使得點P到直線CD的距離等于點P到原點O的距離?如果存在,求出點P的坐標;如果不存在,請說明理由;
(3)點M是直線CD上的一動點,BM交拋物線于N,是否存在點N是線段BM的中點,如果存在,求出點N的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于點A(-1,0),與y軸交于點C(0,3),且對稱軸方程為x=1
(1)求拋物線與x軸的另一個交點B的坐標;
(2)求拋物線的解析式;
(3)設拋物線的頂點為D,在其對稱軸的右側(cè)的拋物線上是否存在點P,使得△PDC是等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由;
(4)若點M是拋物線上一點,以B、C、D、M為頂點的四邊形是直角梯形,試求出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線與x軸交于點A(-1,0),E(3,0),與y軸交于點B,且該精英家教網(wǎng)函數(shù)的最大值是4.
(1)拋物線的頂點坐標是(
 
,
 
);
(2)求該拋物線的解析式和B點的坐標;
(3)設拋物線頂點是D,求四邊形AEDB的面積;
(4)若拋物線y=mx2+nx+p與上圖中的拋物線關于x軸對稱,請直接寫出m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•株洲)如圖,已知拋物線與x軸的一個交點A(1,0),對稱軸是x=-1,則該拋物線與x軸的另一交點坐標是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線與x軸交于點A(-2,0),B(4,0),與y軸交于點C(0,8).
(1)求拋物線的解析式及其頂點D的坐標;
(2)設直線CD交x軸于點E,過點B作x軸的垂線,交直線CD于點F,在坐標平面內(nèi)找一點G,使以點G、F、C為頂點的三角形與△COE相似,請直接寫出符合要求的,并在第一象限的點G的坐標;
(3)將拋物線沿其對稱軸平移,使拋物線與線段EF總有公共點.試探究:拋物線向上最多可平移多少個單位長度?

查看答案和解析>>

同步練習冊答案