如圖所示,AD是△ABC的中線,∠ADC=45°,把△ADC沿AD翻折,點(diǎn)C落在C′的位置,則△BDC′是( 。
分析:由三角形中線的定義,可得BD=CD,又由折疊的性質(zhì),易求得∠BDC′=90°,BD=C′D,即可得△BDC′是等腰直角三角形.
解答:解:∵AD是△ABC的中線,
∴BD=CD,
由折疊的性質(zhì)可得:C′D=CD,∠ADC′=∠ADC=45°,
∴∠CDC′=90°,C′D=BD,
∴∠BDC′=180°-∠CDC′=90°,
∴△BDC′是等腰直角三角形.
故選D.
點(diǎn)評:此題考查了折疊的性質(zhì)、等腰直角三角形的判定以及三角形中線的定義.此題難度不大,注意掌握折疊前后圖形的對應(yīng)關(guān)系,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,AD是△ABC中BC邊上的中線,已知△ABC的面積為12,則△ACD的面積等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,AD是△ABC的中線,AB=6cm,AC=5cm,求△ABD和△ADC的周長的差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

55、如圖所示,AD是∠BAC的平分線,DE⊥AB,垂足為E,DF⊥AC,垂足為F,且BD=CD.
求證:BE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、已知如圖所示,AD是△ABC的角平分線,DE∥AC交AB于E,DF∥AB交AC于F,四邊形AEDF是菱形嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,AD是△ABC的高,AE是⊙O的直徑,A,B,C三點(diǎn)都在圓上,∠DAC=30°,則∠BAE為(  )

查看答案和解析>>

同步練習(xí)冊答案