精英家教網(wǎng)已知如圖正方形ABCD的C、D的兩個(gè)頂點(diǎn)在雙曲線y=
10x
的第一象限分支上,頂點(diǎn)A、B分別在x、y軸上,則此正方形的邊長(zhǎng)等于
 
分析:連接BD,過(guò)點(diǎn)D作DE⊥OA于E,作CF⊥y軸.可以證明,△ABO≌△DAE≌△BCF,即可表示出C,D的坐標(biāo),即可證得△ABO是等腰直角三角形,再根據(jù)D在函數(shù)的圖象上,即可求解.
解答:精英家教網(wǎng)解:連接BD,過(guò)點(diǎn)D作DE⊥OA于E,作CF⊥y軸.
∴∠DEA=90°,
∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∴∠BAO+∠DAE=90°,∠DAE+∠ADE=90°,
∴∠DAE=∠ABO,
又∵AB=AD,
∴△ABO≌△DAE.
同理,△ABO≌△BCF.
設(shè)OA=a,AE=b,則OB=b,BF=a,DE=a,CF=b.
則D的坐標(biāo)是(a+b,a),C的坐標(biāo)是(b,a+b).
∵C、D的兩個(gè)頂點(diǎn)在雙曲線y=
10
x
的第一象限分支上.
∴a(a+b)=b(a+b)=10,
∴a=b,即△ABO是等腰直角三角形.
則D的坐標(biāo)是(2a,a)代入函數(shù)解析式得:2a2=10
∴a2=5,
∴OB2+OA2=10,
則AB=
10

故答案是
10
點(diǎn)評(píng):本題主要考查反比例函數(shù)的性質(zhì),注意通過(guò)解方程組求出交點(diǎn)坐標(biāo).同時(shí)要注意運(yùn)用數(shù)形結(jié)合的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•通州區(qū)一模)已知如圖,△ABC和△DCE都是等邊三角形,若△ABC的邊長(zhǎng)為1,則△BAE的面積是
3
4
3
4

四邊形ABCD和四邊形BEFG都是正方形,若正方形ABCD的邊長(zhǎng)為4,則△FAC的面積是
8
8


如果兩個(gè)正多邊形ABCDE…和BPKGY…是正n(n≥3)邊形,正多邊形ABCDE …的邊長(zhǎng)是2a,則△KCA的面積是
2a2sin
360°
n
或(4a2•sin
90°(n-2)
n
×cos
90°(n-2)
n
2a2sin
360°
n
或(4a2•sin
90°(n-2)
n
×cos
90°(n-2)
n
.(結(jié)果用含有a、n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知如圖,△ABC和△DCE都是等邊三角形,若△ABC的邊長(zhǎng)為1,則△BAE的面積是           .

四邊形ABCD和四邊形BEFG都是正方形,若正方形ABCD的邊長(zhǎng)為4,則△FAC的面積是          .

……

如果兩個(gè)正多邊形ABCDE…和BPKGY…是正n(n≥3)邊形,正多邊形ABCDE …的邊長(zhǎng)是2a,則△KCA的面積是         .(結(jié)果用含有a、n的代數(shù)式表示)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆湖北省黃石市第九中學(xué)九年級(jí)下學(xué)期開(kāi)學(xué)聯(lián)考數(shù)學(xué)試卷(帶解析) 題型:填空題

已知如圖,△ABC和△DCE都是等邊三角形,若△ABC的邊長(zhǎng)為1,則△BAE的面積是,四邊形ABCD和四邊形BEFG都是正方形,若正方形ABCD的邊長(zhǎng)為4,則△FAC的面積是8,……,如果兩個(gè)正多邊形ABCDE…和BPKGY…是正n(n≥3)邊形,正多邊形ABCDE …的邊長(zhǎng)是2a,則△KCA的面積是         .(結(jié)果用含有a、n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省黃石市九年級(jí)下學(xué)期開(kāi)學(xué)聯(lián)考數(shù)學(xué)試卷(解析版) 題型:填空題

已知如圖,△ABC和△DCE都是等邊三角形,若△ABC的邊長(zhǎng)為1,則△BAE的面積是,四邊形ABCD和四邊形BEFG都是正方形,若正方形ABCD的邊長(zhǎng)為4,則△FAC的面積是8,……,如果兩個(gè)正多邊形ABCDE…和BPKGY…是正n(n≥3)邊形,正多邊形ABCDE …的邊長(zhǎng)是2a,則△KCA的面積是         .(結(jié)果用含有a、n的代數(shù)式表示)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京市通州區(qū)九年級(jí)中考一模數(shù)學(xué)卷(解析版) 題型:填空題

已知如圖,△ABC和△DCE都是等邊三角形,若△ABC的邊長(zhǎng)為1,則△BAE的面積是           .

四邊形ABCD和四邊形BEFG都是正方形,若正方形ABCD的邊長(zhǎng)為4,則△FAC的面積是          .

……

如果兩個(gè)正多邊形ABCDE…和BPKGY…是正n(n≥3)邊形,正多邊形ABCDE …的邊長(zhǎng)是2a,則△KCA的面積是          .(結(jié)果用含有a、n的代數(shù)式表示)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案