如圖,在△ABC中,∠BAC=105°,∠B=45°,,AD⊥BC,垂足為D,以A為圓心,AD為半徑畫弧EF,求圖中陰影部分的面積.

【答案】分析:由∠BAC=105°,∠B=45°,得到∠C=180°-105°-45°=30°,然后先在Rt△ABD中求出AD=BD=×2=2,再在Rt△ADC中
求出DC=AD=2,最后由S陰影部分=S△ABC-S扇形AEF通過計(jì)算即可.
解答:解:∵∠BAC=105°,∠B=45°,
∴∠C=180°-105°-45°=30°,
又∵AD⊥BC,
∴∠ADB=∠ADC=90°,
在Rt△ABD中,AB=2,∠B=45°,
∴AD=BD=×2=2,
∴S△ABD=×AD×BD=×2×2=2;
在Rt△ADC中,AD=2,∠C=30°,
∴DC=AD=2
∴S△ADC=×2×2=2;
∴S陰影部分=S△ABC-S扇形AEF=(2+2)-=2+2-
點(diǎn)評(píng):本題考查了扇形的面積公式:S=,其中n為扇形的圓心角的度數(shù),R為圓的半徑),或S=lR,l為扇形的弧長,R為半徑.同時(shí)考查了含45度和含30度的直角三角形三邊的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案