19、當x=
4或-2
時,代數(shù)式2x2-4x與代數(shù)式x2-2x+8的值相等.
分析:根據(jù)題意可列出關(guān)于x的一元二次方程,解方程即可求得x的值.
解答:解:由題意,得:2x2-4x=x2-2x+8,
x2-2x-8=0,
(x-4)(x+2)=0,
x-4=0或x+2=0,
解得:x1=4,x2=-2;
故當x=4或-2時,兩個代數(shù)式的值相等.
點評:在用因式分解法解一元二次方程時,一般地要把方程整理為一般式,如果左邊的代數(shù)式能夠分解為兩個一次因式的乘積,而右邊為零時,則可令每一個一次因式為零,得到兩個一元一次方程,解出這兩個一元一次方程的解就是原方程的兩個解了.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

25、已知:兩個正整數(shù)的和與積相等,求這兩個正整數(shù).
解:不妨設(shè)這兩個正整數(shù)為a、b,且a≤b.
由題意,得ab=a+b,(*)
則ab=a+b≤b+b=2b,所以a≤2,
因為a為正整數(shù),所以a=1或2,
①當a=1時,代入等式(*),得1•b=1+b,b不存在;
②當a=2時,代入等式(*),得2•b=2+b,b=2.
所以這兩個正整數(shù)為2和2.
仔細閱讀以上材料,根據(jù)閱讀材料的啟示,思考是否存在三個正整數(shù),它們的和與積相等試說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:兩個正整數(shù)的和與積相等,求這兩個正整數(shù).
解:設(shè)這兩個正整數(shù)為a、b,且a≤b.
由題意,得ab=a+b,…(*)
則ab=a+b≤b+b=2b,即ab≤2b,所以a≤2.
因為a為正整數(shù),所以a=1或2.
①當a=1時,代入等式(*),得1•b=1+b,b不存在;
②當a=2時,代入等式(*),得2•b=2+b,b=2.
所以這兩個正整數(shù)為2和2.
仿照以上閱讀材料的解法解答下列問題:
已知:三個正整數(shù)的和與積相等,求這三個正整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:兩個正整數(shù)的和與積相等,求這兩個正整數(shù).
解:設(shè)這兩個正整數(shù)為a、b,且a≤b.
由題意,得ab=a+b,…(*)
則ab=a+b≤b+b=2b,即ab≤2b,所以a≤2.
因為a為正整數(shù),所以a=1或2.
①當a=1時,代入等式(*),得1•b=1+b,b不存在;
②當a=2時,代入等式(*),得2•b=2+b,b=2.
所以這兩個正整數(shù)為2和2.
仿照以上閱讀材料的解法解答下列問題:
已知:三個正整數(shù)的和與積相等,求這三個正整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《不等式與不等式組》(03)(解析版) 題型:解答題

(2004•淮安)已知:兩個正整數(shù)的和與積相等,求這兩個正整數(shù).
解:不妨設(shè)這兩個正整數(shù)為a、b,且a≤b.
由題意,得ab=a+b,(*)
則ab=a+b≤b+b=2b,所以a≤2,
因為a為正整數(shù),所以a=1或2,
①當a=1時,代入等式(*),得1•b=1+b,b不存在;
②當a=2時,代入等式(*),得2•b=2+b,b=2.
所以這兩個正整數(shù)為2和2.
仔細閱讀以上材料,根據(jù)閱讀材料的啟示,思考是否存在三個正整數(shù),它們的和與積相等試說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年江蘇省淮安市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•淮安)已知:兩個正整數(shù)的和與積相等,求這兩個正整數(shù).
解:不妨設(shè)這兩個正整數(shù)為a、b,且a≤b.
由題意,得ab=a+b,(*)
則ab=a+b≤b+b=2b,所以a≤2,
因為a為正整數(shù),所以a=1或2,
①當a=1時,代入等式(*),得1•b=1+b,b不存在;
②當a=2時,代入等式(*),得2•b=2+b,b=2.
所以這兩個正整數(shù)為2和2.
仔細閱讀以上材料,根據(jù)閱讀材料的啟示,思考是否存在三個正整數(shù),它們的和與積相等試說明你的理由.

查看答案和解析>>

同步練習冊答案