【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)y2=的圖象交于點(diǎn)A(﹣1,3)、B(n,﹣1).
(1)求反比例函數(shù)的解析式;
(2)當(dāng)y1>y2時(shí),直接寫出x的取值范圍.
【答案】(1)y=﹣;(2)x<﹣1或0<x<3,y1>y2.
【解析】
試題分析:(1)把A點(diǎn)坐標(biāo)代入可求出m的值,從而得到反比例函數(shù)解析式;
(2)利用反比例函數(shù)解析式確定B點(diǎn)坐標(biāo),然后觀察函數(shù)圖象,寫出一次函數(shù)圖象在反比例函數(shù)圖象上方所對(duì)應(yīng)的自變量的取值范圍即可.
解:(1)把A(﹣1,3)代入可得m=﹣1×3=﹣3,
所以反比例函數(shù)解析式為y=﹣;
(2)把B(n,﹣1)代入y=﹣得﹣n=﹣3,解得n=3,則B(3,﹣1),
所以當(dāng)x<﹣1或0<x<3,y1>y2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(﹣,0),點(diǎn)B(0,1)把△ABO繞點(diǎn)O順時(shí)針旋轉(zhuǎn),得△A'B'O,點(diǎn)A,B旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為A',B',記旋轉(zhuǎn)角為α(0°<α<360°).
(1)如圖①,當(dāng)點(diǎn)A′,B,B′共線時(shí),求AA′的長.
(2)如圖②,當(dāng)α=90°,求直線AB與A′B′的交點(diǎn)C的坐標(biāo);
(3)當(dāng)點(diǎn)A′在直線AB上時(shí),求BB′與OA′的交點(diǎn)D的坐標(biāo)(直接寫出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數(shù)).
(1)求證無論k為何值,方程總有兩個(gè)不相等實(shí)數(shù)根;
(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過第三象限,求k的取值范圍;
(3)若原方程的一個(gè)根大于3,另一個(gè)根小于3,求k的最大整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在二次函數(shù)y=-x2+bx+c中,函數(shù)y與自變量x的部分對(duì)應(yīng)值如下表:
x | …… | -2 | 0 | 3 | 4 | …… |
y | …… | -7 | m | n | -7 | …… |
則m、n的大小關(guān)系為( )
A. m>n B. m<n C. m=n D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角△ABC中,∠C=90°,AC=15,BC=20,點(diǎn)D為AB邊上一動(dòng)點(diǎn),若AD的長度為m,且m的范圍為0<m<9,在AC與BC邊上分別取兩點(diǎn)E、F,滿足ED⊥AB,FE⊥ED.
(1)求DE的長度;(用含m的代數(shù)式表示)
(2)求EF的長度;(用含m的代數(shù)式表示)
(3)請(qǐng)根據(jù)m的不同取值,探索過D、E、F三點(diǎn)的圓與△ABC三邊交點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,對(duì)正方形ABCD及其內(nèi)部的每個(gè)點(diǎn)進(jìn)行如下操作:把每個(gè)點(diǎn)的橫、縱坐標(biāo)都乘以同一個(gè)實(shí)數(shù)a,將得到的點(diǎn)先向右平移m個(gè)單位,再向上平移n個(gè)單位(m>0,n>0),得到正方形A'B'C'D'及其內(nèi)部的點(diǎn),其中點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別為A',B'.已知正方形ABCD內(nèi)部的一個(gè)點(diǎn)F經(jīng)過上述操作后得到的對(duì)應(yīng)點(diǎn)F'與點(diǎn)F重合,則點(diǎn)F的坐標(biāo)是( 。
A. (1,4) B. (1,5) C. (﹣1,4) D. (4,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點(diǎn)E作⊙O的切線交AB的延長線于F,切點(diǎn)為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點(diǎn)N,若sinE=,AK=,求CN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象經(jīng)過點(diǎn)A(1,3)、B(3,m).
(1)求反比例函數(shù)的解析式及B點(diǎn)的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是一塊含30°,60°,90°的直角三角板,直角頂點(diǎn)O位于坐標(biāo)原點(diǎn),斜邊AB垂直于x軸,頂點(diǎn)A在函數(shù)y1=(x>0)的圖象上,頂點(diǎn)B在函數(shù)y2=(x>0)的圖象上,∠ABO=30°,則= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com