如圖1,四邊形ABCD,將頂點為A的角繞著頂點A順時針旋轉(zhuǎn),角的一條邊與DC的延長線交于點F,角的另一邊與CB的延長線交于點E,連接EF.
(1)如果四邊形ABCD為正方形,當∠EAF=45°時,有EF=DF-BE.請你思考如何證明這個結(jié)論(只需思考,不必寫出證明過程);
(2)如圖2,如果在四邊形ABCD中,AB=AD,∠ABC=∠ADC=90°,當∠EAF=
1
2
∠BAD時,EF與DF、BE之間有怎樣的數(shù)量關(guān)系?請寫出它們之間的關(guān)系式(只需寫出結(jié)論);
(3)如圖3,如果在四邊形ABCD中,AB=AD,∠ABC與∠ADC互補,當∠EAF=
1
2
∠BAD時,EF與DF、BE之間有怎樣的數(shù)學關(guān)系?請寫出它們之間的關(guān)系式并給予證明;
(4)在(3)中,若BC=4,DC=7,CF=2,求△CEF的周長(直接寫出結(jié)果即可).
精英家教網(wǎng)
分析:(1)(2)(3)的解題思路一致,都是通過兩步全等來實現(xiàn);在DF上截取DM=BE,第一步,首先證△ADM≌△ABE,得DF=BE;第二步,證△AMF≌△AEF,得EF=FM,由此得到DF、EF、BE的數(shù)量關(guān)系.
(4)根據(jù)前三問的結(jié)論知:EF=DF-BE,那么△CEF的周長可轉(zhuǎn)化為:EF+BE+BC+FC=DF+BC+FC,即可得解.
解答:精英家教網(wǎng)解:(1)證明:在DF上截取DM=BE;
∵AD=AB,∠ABE=∠ADM=90°,
∴△ABE≌△ADM(SAS),
∴AE=AM,∠EAB=∠DAM;
∵∠EAF=45°,且∠EAB=∠DAM,
∴∠BAF+∠DAM=45°,即∠MAF=45°=∠EAF,
又∵AE=AM,AF=AF,
∴△AEF≌△AMF,得EF=FM,
∵DF=DM+FM,
∴DF=BE+EF,即EF=DF-BE.

(2)EF=DF-BE.(解法參照(1)(3))

(3)EF=DF-BE.
證明:在DF上截取DM=BE,
∵∠D+∠ABC=∠ABE+∠ABC=180°,
∴∠D=∠ABE,
∴AD=AB,
∴△ADM≌△ABE,
∴AM=AE,
∴∠DAM=∠BAE;
∵∠EAF=∠BAE+∠BAF=
1
2
∠BAD,
∴∠MAF=
1
2
∠BAD,
∴∠EAF=∠MAF;
∵AF是△EAF與△MAF的公共邊,
∴△EAF≌△MAF,
∴EF=MF;
∵MF=DF-DM=DF-BE,
∴EF=DF-BE.

(4)由上面的結(jié)論知:DF=EF+BE;
∴△CEF的周長=EF+BE+BC+CF=DF+BC+CF=9+4+2=15.
即△CEF的周長為15.
點評:此題主要考查的是全等三角形的判定和性質(zhì),通過兩步全等來證得關(guān)鍵的兩組線段相等是此題的基本思路.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,在Rt△ABC中,∠C=90°,BC=4,AC=8,點D在斜邊AB上,分別作DE⊥AC,DF⊥BC,垂精英家教網(wǎng)足分別為E、F,得四邊形DECF,設(shè)DE=x,DF=y.
(1)含y的代數(shù)式表示AE;
(2)y與x之間的函數(shù)關(guān)系式,并求出x的取值范圍;
(3)設(shè)四邊形DECF的面積為S,x在什么范圍時s隨x增大而增大.x在什么范圍時s隨x增大而減小,并畫出s與x圖象;
(4)求出x為何值時,面積s最大.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC的中線,AE=EF=FC,BE、AD相交于點G,下列4個結(jié)論:①DF∥GE;②DF:BG=2:3;③AG=GD;④S△BGD=S四邊形EFDG;其中正確的有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習冊答案