【題目】如圖,直線和反比例函數(shù)的圖象都經(jīng)過(guò)點(diǎn),點(diǎn)在反比例函數(shù)的圖象上,連接.
(1)求直線和反比例函數(shù)的解析式;
(2)直線經(jīng)過(guò)點(diǎn)嗎?請(qǐng)說(shuō)明理由;
(3)當(dāng)直線與反比例數(shù)圖象的交點(diǎn)在兩點(diǎn)之間.且將分成的兩個(gè)三角形面積之比為時(shí),請(qǐng)直接寫(xiě)出的值.
【答案】(1);(2)直線經(jīng)過(guò)點(diǎn),理由見(jiàn)解析;(3)的值為或.
【解析】
(1)依據(jù)直線l1:y=-2x+b和反比例數(shù)的圖象都經(jīng)過(guò)點(diǎn)P(2,1),可得b=5,m=2,進(jìn)而得出直線l1和反比例函數(shù)的表達(dá)式;
(2)先根據(jù)反比例函數(shù)解析式求得點(diǎn)Q的坐標(biāo)為,依據(jù)當(dāng)時(shí),y=-2×+5=4,可得直線l1經(jīng)過(guò)點(diǎn)Q;
(3)根據(jù)OM將分成的兩個(gè)三角形面積之比為,分以下兩種情況:①△OMQ的面積:△OMP的面積=1:2,此時(shí)有QM:PM=1:2;②OMQ的面積:△OMP的面積=2:1,此時(shí)有QM:PM=2:1,再過(guò)M,Q分別作x軸,y軸的垂線,設(shè)點(diǎn)M的坐標(biāo)為(a,b),根據(jù)平行線分線段成比例列方程求解得出點(diǎn)M的坐標(biāo),從而求出k的值.
解:(1)∵直線和反比例函數(shù)的圖象都經(jīng)過(guò)點(diǎn),
.
∴直線l1的解析式為y=-2x+5,反比例函數(shù)大家解析式為;
(2)直線經(jīng)過(guò)點(diǎn),理由如下.點(diǎn)在反比例函數(shù)的圖象上,
.
點(diǎn)的坐標(biāo)為.
當(dāng)時(shí),.
直線經(jīng)過(guò)點(diǎn);
(3)的值為或.理由如下:
OM將分成的兩個(gè)三角形面積之比為,分以下兩種情況:
①△OMQ的面積:△OMP的面積=1:2,此時(shí)有QM:PM=1:2,
如圖,過(guò)點(diǎn)M作ME⊥x軸交PC于點(diǎn)E,MF⊥y軸于點(diǎn)F;過(guò)點(diǎn)Q作QA⊥x軸交PC于點(diǎn)A,作QB⊥y軸于點(diǎn)B,交FM于點(diǎn)G,設(shè)點(diǎn)M的坐標(biāo)為(a,b),
圖①
∵點(diǎn)P的坐標(biāo)為(2,1),點(diǎn)Q的坐標(biāo)為(,4),
∴AE=a-,PE=2-a,
∵ME∥BC,QM:PM=1:2,
∴AE:PE=1:2,
∴2-a=2(a-),解得a=1,
同理根據(jù)FM∥AP,根據(jù)QG:AG=QM:PM=1:2,
可得(4-b):(b-1)=1:2,解得b=3.
所以點(diǎn)M的坐標(biāo)為(1,3),代入y=kx可得k=3;
②OMQ的面積:△OMP的面積=2:1,此時(shí)有QM:PM=2:1,如圖②,
圖②
同理可得點(diǎn)M的坐標(biāo)為(,2),代入y=kx可得k=.
故k的值為3或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年本市蜜桔大豐收,某水果商銷售一種蜜桔,成本價(jià)為10元/千克,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門(mén)規(guī)定這種產(chǎn)品的銷售價(jià)不高于18元/千克,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量(千克)與銷售價(jià)(元/千克)之間的函數(shù)關(guān)系如圖所示:
(1)求與之間的函數(shù)關(guān)系式;
(2)該經(jīng)銷商想要每天獲得150元的銷售利潤(rùn),銷售價(jià)應(yīng)定為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】端午節(jié)那天,小賢回家看到桌上有一盤(pán)粽子,其中有豆沙粽、肉粽各1個(gè),蜜棗粽2個(gè),這些粽子除餡外無(wú)其他差別.
(1)小賢隨機(jī)地從盤(pán)中取出一個(gè)粽子,取出的是肉粽的概率是多少?
(2)小賢隨機(jī)地從盤(pán)中取出兩個(gè)粽子,試用畫(huà)樹(shù)狀圖或列表的方法表示所有可能的結(jié)果,并求出小賢取出蜜棗粽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AF=AB,∠FAB=60°,AE=AC,∠EAC=60°,CF和BE交于O點(diǎn),則下列結(jié)論:①CF=BE;②∠COB=120°;③OA平分∠FOE;④OF=OA+OB.其中正確的有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是胡老師畫(huà)的一幅寫(xiě)生畫(huà),四位同學(xué)對(duì)這幅畫(huà)的作畫(huà)時(shí)間作了猜測(cè). 根據(jù)胡老師給出的方向坐標(biāo),猜測(cè)比較合理的是 ( )
A.小明:“早上8點(diǎn)”B.小亮:“中午12點(diǎn)”
C.小剛:“下午5點(diǎn)”D.小紅:“什么時(shí)間都行”
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為推進(jìn)“全國(guó)億萬(wàn)學(xué)生陽(yáng)光體育運(yùn)動(dòng)”的實(shí)施,組織廣大同學(xué)開(kāi)展健康向上的第二課堂活動(dòng).我市某中學(xué)準(zhǔn)備組建球類社團(tuán)(足球、籃球、羽毛球、乒乓球)、舞蹈社團(tuán)、健美操社團(tuán)、武術(shù)社團(tuán),為了解在校學(xué)生對(duì)這4個(gè)社團(tuán)活動(dòng)的喜愛(ài)情況,該校隨機(jī)抽取部分初中生進(jìn)行了“你最喜歡哪個(gè)社團(tuán)”調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成以下不完整的統(tǒng)計(jì)表,請(qǐng)根據(jù)圖表中的信息解答下列問(wèn)題:
(1)求樣本容量及表格中、的值;
(2)請(qǐng)補(bǔ)全統(tǒng)計(jì)圖;
(3)被調(diào)查的60個(gè)喜歡球類同學(xué)中有3人最喜歡足球,若該校有3000名學(xué)生,請(qǐng)估計(jì)該校最喜歡足球的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著移動(dòng)互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車(chē)應(yīng)運(yùn)而生.為了解某小區(qū)居民使用共享單車(chē)的情況,某研究小組隨機(jī)采訪該小區(qū)的10位居民,得到這10位居民一周內(nèi)使用共享單車(chē)的次數(shù)分別為:17,12,15,20,17,0,7,26,17,9.
(1)這組數(shù)據(jù)的中位數(shù)是 ,眾數(shù)是 ;
(2)計(jì)算這10位居民一周內(nèi)使用共享單車(chē)的平均次數(shù);
(3)若該小區(qū)有200名居民,試估計(jì)該小區(qū)居民一周內(nèi)使用共享單車(chē)的總次數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)防教育和素質(zhì)拓展期間,某天小明和小亮分別從校園某條路的A,B兩端同時(shí)相向出發(fā),當(dāng)小明和小亮第一次相遇時(shí),小明覺(jué)得自己的速度太慢便決定提速至原速的倍,當(dāng)他到達(dá)B端后原地休息,小亮勻速到達(dá)A端后,立即按照原速返回B端(忽略掉頭時(shí)間).兩人相距的路程y(米)與小亮出發(fā)時(shí)間t(秒)之間的關(guān)系如圖所示,當(dāng)小明到達(dá)B端后,經(jīng)過(guò)_____秒,小亮回到B端.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將三角形紙片△ABC按如圖所示的方式折疊,使點(diǎn)B落在邊AC上,記為點(diǎn)B′,折痕為EF.已知AB=AC=8,BC=10,若以點(diǎn)B′,F,C為頂點(diǎn)的三角形與△ABC相似,那么BF的長(zhǎng)度是______________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com