如圖,CB∥OA,∠B=∠A=100°,E、F在CB上,且滿足∠FOC=∠AOC,OE平分∠精英家教網(wǎng)BOF.
(1)求∠EOC的度數(shù);
(2)若平行移動(dòng)AC,那么∠OCB:∠OFB的值是否隨之發(fā)生變化?若變化,試說(shuō)明理由;若不變,求出這個(gè)比值;
(3)在平行移動(dòng)AC的過(guò)程中,是否存在某種情況,使∠OEB=∠OCA?若存在,求出∠OCA度數(shù);若不存在,說(shuō)明理由.
分析:(1)由于BC∥OA,∠B=100°,易求∠AOB,而OE、OC都是角平分線,從而可求∠COE;
(2)利用BC∥OA,可知∠AOC=∠BCO,又因?yàn)椤螦OC=∠COF,所以就有∠FCO=∠FOC,即∠BFO=2∠FCO=2∠OCB,那么∠OCB:∠OFB=1:2;
(3)設(shè)∠OCA=α,∠AOC=x,根據(jù)三角形的外角性質(zhì)、三角形的內(nèi)角和定理、平行線的性質(zhì)可得,α+x=80°,40°+x=α,解即可.
解答:解:(1)∵CB∥OA,
∴∠BOA+∠B=180°,
∴∠BOA=80°,
∵∠FOC=∠AOC,OE平分∠BOF,
∴∠EOC=∠EOF+∠FOC=
1
2
∠BOF+
1
2
∠FOA=
1
2
(∠BOF+∠FOA)=
1
2
×80°=40°;

(2)不變.
∵CB∥OA,
∴∠OCB=∠COA,∠OFB=∠FOA,
∵∠FOC=∠AOC,
∴∠COA=
1
2
∠FOA,即∠OCB:∠OFB=1:2.

(3)在平行移動(dòng)AC的過(guò)程中,存在∠OEB=∠OCA,且∠OCA=60°.
設(shè)∠OCA=α,∠AOC=x,
∵∠OEB=∠COE+∠OCB=40°+x,
∠ACO=80°-x,
∴α=80°-x,40°+x=α,精英家教網(wǎng)
∴x=20°,α=60°.
點(diǎn)評(píng):兩直線平行時(shí),應(yīng)該想到它們的性質(zhì),由兩直線平行的關(guān)系得到角之間的數(shù)量關(guān)系,從而達(dá)到解決問(wèn)題的目的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,CB=1,且OA=OB,BC⊥OC,則點(diǎn)A在數(shù)軸上表示的實(shí)數(shù)是
-
5
-
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,CB∥OA,∠B=∠A=100°,E、F在CB上,且滿足∠FOC=∠AOC,OE平分∠BOF.
(1)求∠EOC的度數(shù);
(2)若平行移動(dòng)AC,那么∠OCB:∠OFB的值是否隨之發(fā)生變化?若變化,試說(shuō)明理由;若不變,求出這個(gè)比值;
(3)在平行移動(dòng)AC的過(guò)程中,是否存在某種情況,使∠OEB=∠OCA?若存在,求出∠OCA度數(shù);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:重慶市月考題 題型:解答題

如圖,CB∥OA,∠B=∠A=100°,E、F在CB上,且滿足∠FOC=∠AOC,OE平分∠BOF.
(1)求∠EOC的度數(shù);
(2)若平行移動(dòng)AC,那么∠OCB:∠OFB的值是否隨之發(fā)生變化?若變化,試說(shuō)明理由;若不變,求出這個(gè)比值;
(3)在平行移動(dòng)AC的過(guò)程中,是否存在某種情況,使∠OEB=∠OCA?若存在,求出∠OCA度數(shù);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:江蘇月考題 題型:解答題

如圖,CB∥OA,∠B=∠A=100°,E、F在CB上,且滿足∠FOC=∠AOC,OE平分∠BOF.
(1)求∠EOC的度數(shù);
(2)若平行移動(dòng)AC,那么∠OCB:∠OFB的值是否隨之發(fā)生變化?若變化,試說(shuō)明理由;若不變,求出這個(gè)比值;
(3)在平行移動(dòng)AC的過(guò)程中,是否存在某種情況,使∠OEB=∠OCA?若存在,求出∠OCA度數(shù);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案