【題目】如圖,在四邊形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四邊形ABCD的周長(zhǎng).
【答案】38+12
【解析】
根據(jù)∠ABC=90°,AE=CE,EB=12,求出AC,根據(jù)Rt△ABC中,∠CAB=30°,BC=12,求出根據(jù)DE⊥AC,AE=CE,得AD=DC,在Rt△ADE中,由勾股定理求出 AD,從而得出DC的長(zhǎng),最后根據(jù)四邊形ABCD的周長(zhǎng)=AB+BC+CD+DA即可得出答案.
∵∠ABC=90°,AE=CE,EB=12,
∴EB=AE=CE=12,
∴AC=AE+CE=24,
∵在Rt△ABC中,∠CAB=30°,
∴BC=12,
∵DE⊥AC,AE=CE,
∴AD=DC,
在Rt△ADE中,由勾股定理得
∴DC=13,
∴四邊形ABCD的周長(zhǎng)=AB+BC+CD+DA=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某城市為創(chuàng)建國(guó)家衛(wèi)生城市,需要購(gòu)買甲、乙兩種類型的分類垃圾桶(如圖所示),據(jù)調(diào)查該城市的A、B、C三個(gè)社區(qū)積極響應(yīng)號(hào)并購(gòu)買,具體購(gòu)買的數(shù)和總價(jià)如表所示.
社區(qū) | 甲型垃圾桶 | 乙型垃圾桶 | 總價(jià) |
A | 10 | 8 | 3320 |
B | 5 | 9 | 2860 |
C | a | b | 2820 |
(1)運(yùn)用本學(xué)期所學(xué)知識(shí),列二元一次方程組求甲型垃圾桶、乙型垃圾桶的單價(jià)每套分別是多少元?
(2)按要求各個(gè)社區(qū)兩種類型的垃圾桶都要有,則a= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形的頂點(diǎn)是坐標(biāo)原點(diǎn),點(diǎn)在第一象限,點(diǎn)在第四象限,點(diǎn)在軸的正半軸上.且,,的長(zhǎng)分別是二元一次方程組的解().
(1)求點(diǎn)和點(diǎn)的坐標(biāo);
(2)點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn),重合),過點(diǎn)的直線與軸平行,直線交邊或邊于點(diǎn),交邊或邊于點(diǎn).設(shè)點(diǎn)的橫坐標(biāo)為,線段的長(zhǎng)度為.已知時(shí),直線恰好過點(diǎn).
①當(dāng)時(shí),求關(guān)于的函數(shù)關(guān)系式;
②當(dāng)時(shí),求點(diǎn)的橫坐標(biāo)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(14分)如圖,在平面直角坐標(biāo)系中,拋物線y=mx2﹣8mx+4m+2(m>2)與y軸的交點(diǎn)為A,與x軸的交點(diǎn)分別為B(x1,0),C(x2,0),且x2﹣x1=4,直線AD∥x軸,在x軸上有一動(dòng)點(diǎn)E(t,0)過點(diǎn)E作平行于y軸的直線l與拋物線、直線AD的交點(diǎn)分別為P、Q.
(1)求拋物線的解析式;
(2)當(dāng)0<t≤8時(shí),求△APC面積的最大值;
(3)當(dāng)t>2時(shí),是否存在點(diǎn)P,使以A、P、Q為頂點(diǎn)的三角形與△AOB相似?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖直線l1的解析式為y=x+1,直線l2的解析式為y=ax+b(a≠0);這兩個(gè)圖象交于y軸上一點(diǎn)C,直線l2與x軸的交點(diǎn)B(2,0)
(1)求a、b的值;
(2)過動(dòng)點(diǎn)Q(n,0)且垂直于x軸的直線與l1、l2分別交于點(diǎn)M、N都位于x軸上方時(shí),求n的取值范圍;
(3)動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿x軸以每秒1個(gè)單位長(zhǎng)的速度向左移動(dòng),設(shè)移動(dòng)時(shí)間為t秒,當(dāng)△PAC為等腰三角形時(shí),直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E是AB邊的中點(diǎn),DE與CB的延長(zhǎng)線交于點(diǎn)F.
(1)求證:△ADE≌△BFE;
(2)若DF平分∠ADC,連接CE.試判斷CE和DF的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為24cm的正方形紙片ABCD上,剪去圖中陰影部分的四個(gè)全等的等腰直角三角形,再沿圖中的虛線折起,折成一個(gè)長(zhǎng)方體形狀的包裝盒(A.B.C.D四個(gè)頂點(diǎn)正好重合于上底面上一點(diǎn)).已知E、F在AB邊上,是被剪去的一個(gè)等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=BF=x(cm).
(1)若折成的包裝盒恰好是個(gè)正方體,試求這個(gè)包裝盒的體積V;
(2)某廣告商要求包裝盒的表面(不含下底面)面積S最大,試問x應(yīng)取何值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在中,,,,可以由繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)與點(diǎn)是對(duì)應(yīng)點(diǎn),點(diǎn)與點(diǎn)是對(duì)應(yīng)點(diǎn),連接,且、、在同一條直線上,則的長(zhǎng)為( )
A.6B.C.D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com