【題目】如圖,在四邊形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四邊形ABCD的周長(zhǎng).

【答案】38+12

【解析】

根據(jù)∠ABC=90°,AE=CE,EB=12,求出AC,根據(jù)RtABC中,∠CAB=30°,BC=12,求出根據(jù)DEAC,AE=CE,得AD=DC,在RtADE中,由勾股定理求出 AD,從而得出DC的長(zhǎng),最后根據(jù)四邊形ABCD的周長(zhǎng)=AB+BC+CD+DA即可得出答案.

∵∠ABC=90°,AE=CE,EB=12,

EB=AE=CE=12,

AC=AE+CE=24,

∵在RtABC中,∠CAB=30°,

BC=12,

DEAC,AE=CE,

AD=DC,

RtADE中,由勾股定理得

DC=13,

∴四邊形ABCD的周長(zhǎng)=AB+BC+CD+DA=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某城市為創(chuàng)建國(guó)家衛(wèi)生城市,需要購(gòu)買甲、乙兩種類型的分類垃圾桶(如圖所示),據(jù)調(diào)查該城市的AB、C三個(gè)社區(qū)積極響應(yīng)號(hào)并購(gòu)買,具體購(gòu)買的數(shù)和總價(jià)如表所示.

社區(qū)

甲型垃圾桶

乙型垃圾桶

總價(jià)

A

10

8

3320

B

5

9

2860

C

a

b

2820

1)運(yùn)用本學(xué)期所學(xué)知識(shí),列二元一次方程組求甲型垃圾桶、乙型垃圾桶的單價(jià)每套分別是多少元?

2)按要求各個(gè)社區(qū)兩種類型的垃圾桶都要有,則a   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形的頂點(diǎn)是坐標(biāo)原點(diǎn),點(diǎn)在第一象限,點(diǎn)在第四象限,點(diǎn)軸的正半軸上.,,的長(zhǎng)分別是二元一次方程組的解().

1)求點(diǎn)和點(diǎn)的坐標(biāo);

2)點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn),重合),過點(diǎn)的直線軸平行,直線交邊或邊于點(diǎn),交邊或邊于點(diǎn).設(shè)點(diǎn)的橫坐標(biāo)為,線段的長(zhǎng)度為.已知時(shí),直線恰好過點(diǎn)

①當(dāng)時(shí),求關(guān)于的函數(shù)關(guān)系式;

②當(dāng)時(shí),求點(diǎn)的橫坐標(biāo)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(14分)如圖,在平面直角坐標(biāo)系中,拋物線y=mx2﹣8mx+4m+2m2)與y軸的交點(diǎn)為A,與x軸的交點(diǎn)分別為Bx1,0),Cx2,0),且x2﹣x1=4,直線AD∥x軸,在x軸上有一動(dòng)點(diǎn)Et,0)過點(diǎn)E作平行于y軸的直線l與拋物線、直線AD的交點(diǎn)分別為P、Q

1)求拋物線的解析式;

2)當(dāng)0t≤8時(shí),求△APC面積的最大值;

3)當(dāng)t2時(shí),是否存在點(diǎn)P,使以A、PQ為頂點(diǎn)的三角形與△AOB相似?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖直線l1的解析式為y=x+1,直線l2的解析式為y=ax+b(a≠0);這兩個(gè)圖象交于y軸上一點(diǎn)C,直線l2x軸的交點(diǎn)B(2,0)

(1)求a、b的值;

(2)過動(dòng)點(diǎn)Q(n,0)且垂直于x軸的直線與l1、l2分別交于點(diǎn)M、N都位于x軸上方時(shí),求n的取值范圍;

(3)動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿x軸以每秒1個(gè)單位長(zhǎng)的速度向左移動(dòng),設(shè)移動(dòng)時(shí)間為t秒,當(dāng)△PAC為等腰三角形時(shí),直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E是AB邊的中點(diǎn),DE與CB的延長(zhǎng)線交于點(diǎn)F.

(1)求證:ADE≌△BFE;

(2)若DF平分ADC,連接CE.試判斷CE和DF的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為24cm的正方形紙片ABCD上,剪去圖中陰影部分的四個(gè)全等的等腰直角三角形,再沿圖中的虛線折起,折成一個(gè)長(zhǎng)方體形狀的包裝盒(A.B.C.D四個(gè)頂點(diǎn)正好重合于上底面上一點(diǎn)).已知E、F在AB邊上,是被剪去的一個(gè)等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=BF=x(cm).

(1)若折成的包裝盒恰好是個(gè)正方體,試求這個(gè)包裝盒的體積V;

(2)某廣告商要求包裝盒的表面(不含下底面)面積S最大,試問x應(yīng)取何值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在中,,,可以由繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)與點(diǎn)是對(duì)應(yīng)點(diǎn),點(diǎn)與點(diǎn)是對(duì)應(yīng)點(diǎn),連接,且、、在同一條直線上,則的長(zhǎng)為(

A.6B.C.D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案