(2013•濟(jì)寧)已知ab=4,若-2≤b≤-1,則a的取值范圍是( 。
分析:根據(jù)已知條件可以求得b=
4
a
,然后將b的值代入不等式-2≤b≤-1,通過(guò)解該不等式即可求得a的取值范圍.
解答:解:由ab=4,得
b=
4
a

∵-2≤b≤-1,
∴-2≤
4
a
≤-1,
∴-4≤a≤-2.
故選D.
點(diǎn)評(píng):本題考查的是不等式的基本性質(zhì),不等式的基本性質(zhì):
(1)不等式兩邊加(或減)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變.
(2)不等式兩邊乘(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變.
(3)不等式兩邊乘(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•濟(jì)寧三模)如圖,已知直線(xiàn)y=kx-6與拋物線(xiàn)y=ax2+bx+c相交于A(yíng),B兩點(diǎn),且點(diǎn)A(1,-4)為拋物線(xiàn)的頂點(diǎn),點(diǎn)B在x軸上.
(1)求拋物線(xiàn)的解析式;
(2)在(1)中拋物線(xiàn)的第二象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•濟(jì)寧)人教版教科書(shū)對(duì)分式方程驗(yàn)根的歸納如下:
“解分式方程時(shí),去分母后所得整式方程的解有可能使原分式方程中的分母為0,因此應(yīng)如下檢驗(yàn):將整式方程的解代入最簡(jiǎn)公分母,如果最簡(jiǎn)公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個(gè)解不是原分式方程的解.”
請(qǐng)你根據(jù)對(duì)這段話(huà)的理解,解決下面問(wèn)題:
已知關(guān)于x的方程
m-1
x-1
-
x
x-1
=0無(wú)解,方程x2+kx+6=0的一個(gè)根是m.
(1)求m和k的值;
(2)求方程x2+kx+6=0的另一個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2013•濟(jì)寧)閱讀材料:
若a,b都是非負(fù)實(shí)數(shù),則a+b≥2
ab
.當(dāng)且僅當(dāng)a=b時(shí),“=”成立.
證明:∵(
a
-
b
2≥0,∴a-2
ab
+b≥0.
∴a+b≥2
ab
.當(dāng)且僅當(dāng)a=b時(shí),“=”成立.
舉例應(yīng)用:
已知x>0,求函數(shù)y=2x+
2
x
的最小值.
解:y=2x+
2
x
2
2x•
2
x
=4.當(dāng)且僅當(dāng)2x=
2
x
,即x=1時(shí),“=”成立.
當(dāng)x=1時(shí),函數(shù)取得最小值,y最小=4.
問(wèn)題解決:
汽車(chē)的經(jīng)濟(jì)時(shí)速是指汽車(chē)最省油的行駛速度.某種汽車(chē)在每小時(shí)70~110公里之間行駛時(shí)(含70公里和110公里),每公里耗油(
1
18
+
450
x2
)升.若該汽車(chē)以每小時(shí)x公里的速度勻速行駛,1小時(shí)的耗油量為y升.
(1)求y關(guān)于x的函數(shù)關(guān)系式(寫(xiě)出自變量x的取值范圍);
(2)求該汽車(chē)的經(jīng)濟(jì)時(shí)速及經(jīng)濟(jì)時(shí)速的百公里耗油量(結(jié)果保留小數(shù)點(diǎn)后一位).

查看答案和解析>>

同步練習(xí)冊(cè)答案