27、如圖所示,將兩塊三角板的頂點重合.
(1)寫出以O為頂點的相等的角;
(2)若∠AOD=127°,求∠BOC度數(shù);
(3)寫出∠BOC與∠AOD之間所具有的數(shù)量關系;
(4)當三角板AOB繞點O旋轉時,你所寫出的(3)中的關系是否有變化?請說明理由.
分析:(1)由于∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,根據(jù)同角的余角相等,那么∠AOC=∠BOD;
(2)由于∠AOD=∠AOC+90°=127°,易求∠AOC,進而可求∠BOC;
(3)由于∠AOD=∠AOC+90°,∠AOC+∠BOC=90°,那么∠AOD+∠BOC=∠AOC+90°+90°-∠AOC=180°,
從而可知∠BOC與∠AOD互補;
(4)分情況討論:①射線OB在OC、OD之間,此種情況的證明如(3);②射線OB在OC、OD外部,如右圖,顯然∠BOC與∠AOD互補.綜合①②可知當三角板AOB繞點O旋轉時,你所寫出的(3)中的關系沒有變化.
解答:解:(1)∠AOC=∠BOD;
∵∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,
∴∠AOC=∠BOD.
(2)∠BOC=53°.理由如下:
∵∠AOD=∠AOC+90°=127°,
∴∠AOC=37°,
∴∠BOC=90°-∠AOC=53°;
(3)∠BOC與∠AOD互補.理由如下:
∵∠AOD=∠AOC+90°,∠AOC+∠BOC=90°,
∴∠AOD+∠BOC=∠AOC+90°+90°-∠AOC=180°,
∴∠BOC與∠AOD互補;
(4)不變.
①射線OB在OC、OD之間,此種情況的證明如(3);
②射線OB在OC、OD外部,如右圖,顯然∠BOC與∠AOD互補.
綜合①②可知當三角板AOB繞點O旋轉時,你所寫出的(3)中的關系沒有變化.
點評:本題考查了角的計算.解題的關鍵是理解余角、補角定義,并且要分情況討論.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:江蘇期末題 題型:解答題

把兩塊全等的直角三角形ABC和DEF疊放在一起,使三角板DEF的銳角頂點D與三角扳ABC的斜邊中點O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不動,讓三角扳DEF繞點O旋轉,設射線DE與射線AB相交于點P,射線DF與線段BC相交于點Q。

(1)如圖1,當射線DF經(jīng)過點B,即點Q與點B重合時,易證△APD~△CDQ。此時,AP·CQ=______。
(2)將三角板DEF由圖1所示的位置繞點O沿逆時針方向旋轉,設旋轉角為a.其中 0°<a<90°,問AP·CQ的值是否改變?說明你的理由。
(3)在(2)的條件下,設CQ=x,兩塊三角板重疊面積為y,求y與x的函數(shù)關系式。(圖2,圖3供解題用)

查看答案和解析>>

同步練習冊答案