如圖,四邊形A′B′C′D′是四邊形ABCD繞點O順時針旋轉(zhuǎn)90°后得到的,你能作出旋轉(zhuǎn)前的圖形嗎?
分析:連接OA,OB,OC,OD,作∠AOA′=90°,且OA′=OA,其它類似,得出對應(yīng)點A′,B′,C′,D′,依次連接A′B′C′D′即可.
解答:解:如圖所示:
點評:此題主要考查了旋轉(zhuǎn)的作圖.明確旋轉(zhuǎn)中心,旋轉(zhuǎn)方向,旋轉(zhuǎn)角是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•聊城)如圖,四邊形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足為E,求證:AE=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•路南區(qū)一模)如圖,四邊形OABC是面積為4的正方形,函數(shù)y=
k
x
(x>0)的圖象經(jīng)過點B.
(1)求函數(shù)的解析式;
(2)將正方形OABC分別沿直線AB、BC翻折,得到正方形MABC′、NA′BC.設(shè)線段MC′、NA′分別與函數(shù)y=
k
x
(k>0)
的圖象交于點E、F,請判斷線段EC′與FA′的大小關(guān)系,并說明理由;
(3)將函數(shù)y=
k
x
的圖象沿y軸向上平移使其過點C′,得到圖象l1,直接說出圖象l1是否過點A′?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•懷柔區(qū)二模)如圖,四邊形ABCD是正方形,△ABE是等邊三角形,M為對角線BD(不含B點)上任意一點,連結(jié)AM、CM.
(1)當(dāng)M點在何處時,AM+CM的值最;
(2)當(dāng)M點在何處時,AM+BM+CM的值最小,并說明理由;
(3)當(dāng)AM+BM+CM的最小值為
3
+1
時,求正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABGH,四邊形BCFG,四邊形CDEF都是正方形.則∠ACH+∠ADH的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD內(nèi)接于⊙O,若∠BOD=140°,則它的一個外角∠DCE=
70°
70°

查看答案和解析>>

同步練習(xí)冊答案