(8分)如圖,將直角三角形紙片ABC沿邊BC所在直線向右平移,使B點(diǎn)移至斜
邊BC的中點(diǎn)E處,連接AD、AE、CD。
(1)求證:四邊形AECD是菱形。
(2)若直角三角形紙片ABC的斜邊BC的長為100cm,且AC=60cm.求ED的長 和四邊形AECD的面積;

(1)證明:因?yàn)閷⒅苯侨切渭埰珹BC沿邊BC所在直線向右平移,所以AD∥BE且AD=BE,又E為BC的中點(diǎn),得BE=EC,AD∥EC且AD=EC,所以四邊形AECD為平行四邊形……2分,
因?yàn)锳B∥DE,AB⊥AC得DE⊥AC,
所以四邊形AECD是菱形……4分
(2)解: ∵直角三角形紙片ABC的斜邊BC的長為100cm,
∴菱形AECD的周長為200cm
∴AE=EC=CD=DA=50cm
在菱形AECD中,AC⊥ED,設(shè)AC與ED交于點(diǎn)O,且AO=CO,EO=DO
∴AO=CO=AC=30cm………5分
∴在Rt△AOE中,
∴ED=2EO=80cm………6分
………8分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將直角梯形OABC置于直角坐標(biāo)系中,O是原點(diǎn),且A、B、C的坐標(biāo)分別是(8,0),(5,k),(0,精英家教網(wǎng)k),在OA邊上取動點(diǎn)P,連接BP,作PD⊥BP交y軸正半軸于點(diǎn)D,設(shè)OP=x,OD=y.
(1)當(dāng)k=4時(shí),
①求出y關(guān)于x的函數(shù)關(guān)系式;
②若△APB是等腰三角形時(shí),求y的值;
③點(diǎn)D能否與C點(diǎn)重合,若存在,求出相應(yīng)x的值,若不存在,請說明理由;
(2)當(dāng)k在什么范圍內(nèi),存在點(diǎn)D,使得PD經(jīng)過點(diǎn)C?(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本小題滿分9分)

如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-2,0),連結(jié)OA,將線段OA繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)120°,得到線段OB.

(1)求經(jīng)過A、O、B三點(diǎn)的拋物線的解析式;

(2)在(2)中拋物線的對稱軸上是否存在點(diǎn)C,使△BOC的周長最。咳舸嬖,求出點(diǎn)C的坐標(biāo);若不存在,請說明理由.

(3)如果點(diǎn)P是(2)中的拋物線上的動點(diǎn),且在x軸的下方,那么△PAB是否有最大面積?若有,求出此時(shí)P點(diǎn)的坐標(biāo)及△PAB的最大面積;若沒有,請說明理由.

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題7分)如圖,等腰直角△ABC中,∠ABC=90°,點(diǎn)D在AC上, 將△ABD繞頂點(diǎn)B沿順時(shí)針方向旋90°后得到△CBE.

 

 

 

⑴求∠DCE的度數(shù);

⑵當(dāng)AB=4,AD:DC=1: 3時(shí),求DE的長.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本小題滿分9分)
如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-2,0),連結(jié)OA,將線段OA繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)120°,得到線段OB.
(1)求經(jīng)過A、O、B三點(diǎn)的拋物線的解析式;
(2)在(2)中拋物線的對稱軸上是否存在點(diǎn)C,使△BOC的周長最小?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請說明理由.
(3)如果點(diǎn)P是(2)中的拋物線上的動點(diǎn),且在x軸的下方,那么△PAB是否有最大面積?若有,求出此時(shí)P點(diǎn)的坐標(biāo)及△PAB的最大面積;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省連云港市中考數(shù)學(xué)試題 題型:解答題

(11·珠海)(本題滿分9分)如圖,在直角梯形ABCD中,ADBC,ABBC,

ADAB=1,BC=2.將點(diǎn)A折疊到CD邊上,記折疊后A點(diǎn)對應(yīng)的點(diǎn)為PPD點(diǎn)不重

合),折痕EF只與邊AD、BC相交,交點(diǎn)分別為EF.過點(diǎn)PPNBCABN、交

EFM,連結(jié)PAPE、AMEFPA相交于O

(1)指出四邊形PEAM的形狀(不需證明);

(2)記∠EPMa,△AOM、△AMN的面積分別為S1S2

 

查看答案和解析>>

同步練習(xí)冊答案