【題目】在我國古算書《周髀算經》中記載周公與商高的談話,其中就有勾股定理的最早文字記錄,即“勾三股四弦五”,亦被稱作商高定理.如圖1是由邊長相等的小正方形和直角三角形構成的,可以用其面積關系驗證勾股定理.圖2是由圖1放入矩形內得到的,,AB=3AC=4,則DEF,G,H,I都在矩形KLMJ的邊上,那么矩形KLMJ的面積為__________

【答案】110

【解析】

延長ABKF于點O,延長ACGM于點P,可得四邊形AOLP是正方形,然后求出正方形的邊長,再求出矩形KLMJ的長與寬,然后根據(jù)矩形的面積公式列式計算即可得解.

解:如圖,延長ABKF于點O,延長ACGM于點P,

則四邊形OALP是矩形.

∵∠CBF=90°,

∴∠ABC+OBF=90°,

又∵直角ABC中,∠ABC+ACB=90°,

∴∠OBF=ACB,

OBFACB中,

∴△OBF≌△ACBAAS),

AC=OB

同理:ACB≌△PGC

PC=AB,

OA=AP,

∴矩形AOLP是正方形,

邊長AO=AB+AC=3+4=7

KL=3+7=10LM=4+7=11,

∴矩形KLMJ的面積為10×11=110

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為圓外一點,AC交⊙O于點D,BC2=CDCA,弦ED=BDBEACF.

(1)求證:BC為⊙O切線;

(2)判斷BCF的形狀并說明理由;

(3)已知BC=15,CD=9,求tanADE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,初三數(shù)學興趣小組同學為了測量垂直于水平地面的一座大廈AB的高度,一測量人員在大廈附近C處,測得建筑物頂端A處的仰角大小為45°,隨后沿直線BC向前走了60米后到達D處,在D處測得A處的仰角大小為30°,則大廈AB的高度約為多少米?(注:不計測量人員的身高,結果按四舍五入保留整數(shù),參考數(shù)據(jù):1.41,1.73

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計劃開設以下課外活動項目:A 一版畫、B 一機器人、C 一航模、D 一園藝種植.為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查(每位學生 必須選且只能選一個項目),并將調查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

1)這次被調查的學生共有 人;扇形統(tǒng)計圖中,選“D一園藝種植的學生人數(shù)所占圓心角的度數(shù)是 °;

2)請你將條形統(tǒng)計圖補充完整;

3)若該校學生總數(shù)為 1500 人,試估計該校學生中最喜歡機器人和最喜歡航模項目的總 人數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC,按如下步驟作圖:

(1)以A圓心,AB長為半徑畫。

(2)以C為圓心,CB長為半徑畫弧,兩弧相交于點D;

(3)連接BD,與AC交于點E,連接AD,CD.

①四邊形ABCD是中心對稱圖形;

②△ABC≌△ADC;

③AC⊥BD且BE=DE;

④BD平分∠ABC.

其中正確的是(

A.①② B.②③ C.①③ D.③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+c經過點A0,2)和點B-1,0).

1)求此拋物線的解析式;

2)將此拋物線平移,使其頂點坐標為(2,1),平移后的拋物線與x軸的兩個交點分別為點C,D(點C在點D的左邊),求點C,D的坐標;

3)將此拋物線平移,設其頂點的縱坐標為m,平移后的拋物線與x軸兩個交點之間的距離為n,若1m3,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】借鑒我們已有的研究函數(shù)的經驗,探索函數(shù)y|x22x3|2圖象和性質,探究過程如下,請補充完整.

1)自變量x的取值范圍是全體實數(shù),xy的幾組對應值列表如下:

x

3

2

1

0

1

2

3

4

5

y

10

m

2

1

n

1

2

3

10

其中,m   ,n   ;

2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標系中描點,并畫出函數(shù)圖象;

3)觀察函數(shù)圖象:

①當方程|x22x3|b+2有且僅有兩個不相等的實數(shù)根時,根據(jù)函數(shù)圖象直接寫出b的取值范圍為   

②在該平面直角坐標系中畫出直線yx+2的圖象,根據(jù)圖象直接寫出該直線與函數(shù)y|x22x3|2的交點橫坐標為:   (結果保留一位小數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在的正三角形的網格中,的三個頂點都在格點上.請按要求畫圖和計算:①僅用無刻度直尺;②保留作圖痕跡.

1)在圖1中,畫出邊上的中線

2)在圖2中,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=﹣2x+4x軸交于點A,與y軸交于點B,與雙曲線yx0)交于CD兩點,且∠AOC=∠ADO,則k的值為_____

查看答案和解析>>

同步練習冊答案