【題目】如圖,在平面直角坐標系中,點F的坐標為(0,10).點E的坐標為(20,0),直線l1經(jīng)過點F和點E,直線l1與直線l2 、y=x相交于點P.

(1)求直線l1的表達式和點P的坐標;

(2)矩形ABCD的邊ABy軸的正半軸上,點A與點F重合,點B在線段OF上,邊AD平行于x 軸,且AB=6,AD=9,將矩形ABCD沿射線FE的方向平移,邊AD始終與x 軸平行.已知矩形ABCD以每秒個單位的速度勻速移動(點A移動到點E時止移動),設(shè)移動時間為t秒(t>0).

①矩形ABCD在移動過程中,B、C、D三點中有且只有一個頂點落在直線l1l2上,請直接寫出此時t的值;

②若矩形ABCD在移動的過程中,直線CD交直線l1于點N,交直線l2于點M.當(dāng)PMN的面積等于18時,請直接寫出此時t的值.

【答案】(1)直線l1的表達式為y=﹣x+10,點P坐標為(8,6);(2)t值為②當(dāng)t=時,PMN的面積等于18.

【解析】1)利用待定系數(shù)法求解析式,函數(shù)關(guān)系式聯(lián)立方程求交點;

(2)①分析矩形運動規(guī)律,找到點D和點B分別在直線l2上或在直線l1上時的情況,利用AD、AB分別可以看成圖象橫坐標、縱坐標之差構(gòu)造方程求點A坐標,進而求出AF距離;

②設(shè)點A坐標,表示PMN即可.

(1)設(shè)直線l1的表達式為y=kx+b,

∵直線l1過點F(0,10),E(20,0),

解得,

直線l1的表達式為y=﹣x+10,

解方程組,

∴點P坐標為(8,6);

(2)①如圖,當(dāng)點D在直線上l2

AD=9

∴點D與點A的橫坐標之差為9,

∴將直線l1與直線l2 的解析式變形為x=20﹣2y,x=y,

y﹣(20﹣2y)=9,

解得:y=,

x=20﹣2y=,

則點A的坐標為:(),

AF=,

∵點A速度為每秒個單位,

t=;

如圖,當(dāng)點Bl2 直線上時,

AB=6,

∴點A的縱坐標比點B的縱坐標高6個單位,

∴直線l1的解析式減去直線l2 的解析式得,

x+10﹣x=6,

解得x=,

y=﹣x+10=

則點A坐標為(,

AF=,

∵點A速度為每秒個單位

t=,

t值為

②如圖,

設(shè)直線ABl2 于點H,

設(shè)點A橫坐標為a,則點D橫坐標為a+9,

由①中方法可知:MN=,

此時點PMN距離為:a+9﹣8=a+1,

∵△PMN的面積等于18,

=18,

解得

a1=-1,a2=﹣-1(舍去),

AF=6﹣,

則此時t,

當(dāng)t=時,PMN的面積等于18.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解了解節(jié)能減排、垃圾分類等知識的普及情況,從該校2000名學(xué)生中隨機抽取了部分學(xué)生進行調(diào)查調(diào)查,調(diào)查結(jié)果分為非常了解“、“了解”、“了解較少”、“不了解四類,并將調(diào)查結(jié)果繪制出以下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:

(1)本次調(diào)查的學(xué)生共有   人,估計該校2000名學(xué)生中不了解的人數(shù)約有   人.

(2)“非常了解4人中有A1,A2兩名男生,B1,B2兩名女生,若從中隨機抽取兩人去參加環(huán)保知識競賽,請用畫樹狀圖和列表的方法,求恰好抽到2名男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點在直線上,點在直線上,

如圖①,若,判斷的位置關(guān)系,并說明理由;

圖②,在的結(jié)論下,上有一點,且,判斷的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家需要用鋼管做防盜窗,按設(shè)計要求,其中需要長為 0.8m2.5m 且粗細相同的鋼管分別為 100 根,32 根,并要求這些用料不能是焊接而成的.現(xiàn)鋼材市場的這種規(guī)格的鋼管每根為 6m

1)試問一根 6m 長的圓鋼管有哪些裁剪方法呢?請?zhí)顚懴驴眨ㄓ嗔献鲝U).

方法①:當(dāng)只裁剪長為 0.8m 的用料時,最多可剪 根;

方法②:當(dāng)先剪下 1 2.5m 的用料時,余下部分最多能剪 0.8m 長的用料 根;

方法③:當(dāng)先剪下 2 2.5m 的用料時,余下部分最多能剪 0.8m 長的用料 根.

2)分別用(1)中的方法②和方法③各裁剪多少根 6m 長的鋼管,才能剛好得到所需要的相應(yīng)數(shù)量的材料?

3)試探究:除(2)中方案外,在(1)中還有哪兩種方法聯(lián)合,所需要 6m 長的鋼管與(2 中根數(shù)相同?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線ACBD交于點O.過點CBD的平行線,過點DAC的平行線,兩直線相交于點E.

(1)求證:四邊形OCED是矩形;

(2)若CE=1,DE=2,ABCD的面積是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OAC的頂點O在坐標原點,OA邊在x軸上,OA=2,AC=1,把OAC繞點A按順時針方向旋轉(zhuǎn)到O′AC′,使得點O′的坐標是(1,),則在旋轉(zhuǎn)過程中線段OC掃過部分(陰影部分)的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是⊙O外的一點,PA、PB是⊙O的兩條切線,A、B是切點,POAB于點F,延長BO交⊙O于點C,交PA的延長交于點Q,連結(jié)AC.

(1)求證:ACPO;

(2)設(shè)DPB的中點,QDAB于點E,若⊙O的半徑為3,CQ=2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,過點A(2,0)的直線y軸交于點B,與雙曲線交于點P,點P位于y軸左側(cè),且到y軸的距離為1,已知tan∠OAB=

(1)分別求出直線與雙曲線相應(yīng)的函數(shù)表達式;

(2)觀察圖象,直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以AB為直徑的半圓中,將弧BC沿弦BC折疊交AB于點D,若AD=5,DB=7.

(1)求BC的長;

(2)求圓心到BC的距離.

查看答案和解析>>

同步練習(xí)冊答案