【題目】如圖,在矩形ABCD中,P從點D出發(fā)向點A運動,運動到點A即停止;同時,點Q從點B出發(fā)向點C運動,運動到點C即停止,點P、Q的速度都是,連接PQ、AQ、設點P、Q運動的時間為ts.

t為何值時,四邊形ABQP是矩形;

t為何值時,四邊形AQCP是菱形.

【答案】時,四邊形ABQP為矩形; 時,四邊形AQCP為菱形.

【解析】

當四邊形ABQP是矩形時,,據(jù)此求得t的值;

當四邊形AQCP是菱形時,,列方程求得運動的時間t;

由已知可得,,

在矩形ABCD中,,

時,四邊形ABQP為矩形,

,得

故當時,四邊形ABQP為矩形.

可知,四邊形AQCP為平行四邊形

時,四邊形AQCP為菱形

時,四邊形AQCP為菱形,解得,

故當時,四邊形AQCP為菱形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)閱讀理解:

如圖①,在ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.

解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或將ACD繞著點D逆時針旋轉180°得到EBD),把AB、AC,2AD集中在ABE中,利用三角形三邊的關系即可判斷.

中線AD的取值范圍是 ;

(2)問題解決:

如圖②,在ABC中,D是BC邊上的中點,DEDF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CFEF;

(3)問題拓展:

如圖③,在四邊形ABCD中,B+D=180°,CB=CD,BCD=140°,以為頂點作一個70°角,角的兩邊分別交AB,AD于E、F兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,tan∠ACD= ,AB=5,那么CD的長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,延長AB到點E,使BE=AB,連接DE交BC于點F,則下列結論不一定成立的是(
A.∠E=∠CDF
B.EF=DF
C.AD=2BF
D.BE=2CF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小華家買了一輛轎車,他連續(xù)10天記錄了他家轎車每天行駛的路程,以30千米為標準,超過或不足部分分別用正數(shù)、負數(shù)表示,得到的數(shù)據(jù)如下(單位:千米):+3,+1,,+9,,+2.5,,+4.5,,+2

(1)請你運用所學知識估計小華家一個月(按30天算)轎車行駛的路程;

(2)若已知該轎車每行駛100千米耗油8升,目前汽油價格為每升7.8元,試根據(jù)(1)題估計小

華家一年(按12個月算)的汽油費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知菱形ABCD邊長為4,,點E從點A出發(fā)沿著AD、DC方向運動,同時點F從點D出發(fā)以相同的速度沿著DC、CB的方向運動.

如圖1,當點EAD上時,連接BE、BF,試探究BEBF的數(shù)量關系,并證明你的結論;

的前提下,求EF的最小值和此時的面積;

當點E運動到DC邊上時,如圖2,連接BE、DF,交點為點M,連接AM,則大小是否變化?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AD是⊙O的弦,點F是DA延長線的一點,AC平分∠FAB交⊙O于點C,過點C作CE⊥DF,垂足為點E.
(1)求證:CE是⊙O的切線;
(2)若AE=1,CE=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,直線y1=2x﹣2與坐標軸交于A、B兩點,與雙曲線y2= (x>0)交于點C,過點C作CD⊥x軸,且OA=AD,則以下結論: ①當x>0時,y1隨x的增大而增大,y2隨x的增大而減小;
②k=4;
③當0<x<2時,y1<y2;
④如圖,當x=4時,EF=4.
其中正確結論的個數(shù)是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,射線OA的方向是北偏東20°,射線OB的方向是北偏西40°,ODOB的反向延長線.若OC是∠AOD的平分線,則∠BOC=_____°,射線OC的方向是_____

查看答案和解析>>

同步練習冊答案