(2010•黔南州)如圖,在△ABC中,AB=AC=5,BC=6,點E,F(xiàn)是中線AD上的兩點,則圖中陰影部分的面積是( )

A.6
B.12
C.24
D.30
【答案】分析:由圖形知,本圖是軸對稱圖形,對稱軸是AD所在的直線.所以陰影部分的面積為全面積的一半,由軸對稱圖形的性質(zhì)知,BD=BC=3,AD是三角形的高,AD==4,S△ABC==12,∴陰影部分的面積為6.
解答:解:∵AB=AC
∵△ABC是等腰三角形
AD為等腰三角形的中線
∴AD⊥BC
∴△ABD、△ACD關(guān)于AD對稱,△BEF與△CEF關(guān)于AD對稱
∵AB=AC,AD===4
∴S△DFB=S△DFC,S△EBF=S△ECF,S△BE=S△ACE
∴S=S
∴=×BC×AD==6.
故選A.
點評:本題通過觀察可以發(fā)現(xiàn)是軸對稱圖形,且陰影部分的面積為全面積的一半,根據(jù)軸對稱圖形的性質(zhì)求解.其中看出三角形BEF與三角形CEF關(guān)于AD對稱,面積相等是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省蘇州市工業(yè)園區(qū)八年級第二學(xué)期數(shù)學(xué)卷 題型:單選題

(2010•黔南州)如果,則=(  )

A.B.1C.D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省連云港市中考數(shù)學(xué)原創(chuàng)試卷大賽(30)(解析版) 題型:解答題

(2010•黔南州)如圖,在平面直角坐標(biāo)系中,已知點A坐標(biāo)為(2,4),直線x=2與x軸相交于點B,連接OA,拋物線y=x2從點O沿OA方向平移,與直線x=2交于點P,頂點M到A點時停止移動.
(1)求線段OA所在直線的函數(shù)解析式;
(2)設(shè)拋物線頂點M的橫坐標(biāo)為m,
①用m的代數(shù)式表示點P的坐標(biāo);
②當(dāng)m為何值時,線段PB最短;
(3)當(dāng)線段PB最短時,相應(yīng)的拋物線上是否存在點Q,使△QMA的面積與△PMA的面積相等?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省臺州市臨海市杜橋?qū)嶒炛袑W(xué)初三第四次統(tǒng)練數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•黔南州)如圖,在平面直角坐標(biāo)系中,已知點A坐標(biāo)為(2,4),直線x=2與x軸相交于點B,連接OA,拋物線y=x2從點O沿OA方向平移,與直線x=2交于點P,頂點M到A點時停止移動.
(1)求線段OA所在直線的函數(shù)解析式;
(2)設(shè)拋物線頂點M的橫坐標(biāo)為m,
①用m的代數(shù)式表示點P的坐標(biāo);
②當(dāng)m為何值時,線段PB最短;
(3)當(dāng)線段PB最短時,相應(yīng)的拋物線上是否存在點Q,使△QMA的面積與△PMA的面積相等?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年貴州省黔南州中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•黔南州)如圖,在平面直角坐標(biāo)系中,已知點A坐標(biāo)為(2,4),直線x=2與x軸相交于點B,連接OA,拋物線y=x2從點O沿OA方向平移,與直線x=2交于點P,頂點M到A點時停止移動.
(1)求線段OA所在直線的函數(shù)解析式;
(2)設(shè)拋物線頂點M的橫坐標(biāo)為m,
①用m的代數(shù)式表示點P的坐標(biāo);
②當(dāng)m為何值時,線段PB最短;
(3)當(dāng)線段PB最短時,相應(yīng)的拋物線上是否存在點Q,使△QMA的面積與△PMA的面積相等?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年天津市東麗區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•黔南州)如圖,在平面直角坐標(biāo)系中,已知點A坐標(biāo)為(2,4),直線x=2與x軸相交于點B,連接OA,拋物線y=x2從點O沿OA方向平移,與直線x=2交于點P,頂點M到A點時停止移動.
(1)求線段OA所在直線的函數(shù)解析式;
(2)設(shè)拋物線頂點M的橫坐標(biāo)為m,
①用m的代數(shù)式表示點P的坐標(biāo);
②當(dāng)m為何值時,線段PB最短;
(3)當(dāng)線段PB最短時,相應(yīng)的拋物線上是否存在點Q,使△QMA的面積與△PMA的面積相等?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案