如圖甲,在△ABC中,∠ACB為銳角,點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.解答下列問(wèn)題:
(1)如果AB=AC,∠BAC=90°,
①當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖乙,線段CF、BD之間的位置關(guān)系為_(kāi)_____,數(shù)量關(guān)系為_(kāi)_____.
②當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖丙,①中的結(jié)論是否仍然成立,為什么?
(2)如果AB≠AC,∠BAC≠90°點(diǎn)D在線段BC上運(yùn)動(dòng).試探究:當(dāng)△ABC滿足一個(gè)什么條件時(shí),CF⊥BC(點(diǎn)C、F重合除外)?并說(shuō)明理由.

【答案】分析:(1)當(dāng)點(diǎn)D在BC的延長(zhǎng)線上時(shí)①的結(jié)論仍成立.由正方形ADEF的性質(zhì)可推出△DAB≌△FAC,所以CF=BD,∠ACF=∠ABD.結(jié)合∠BAC=90°,AB=AC,得到∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.
(2)當(dāng)∠ACB=45°時(shí),過(guò)點(diǎn)A作AG⊥AC交CB或CB的延長(zhǎng)線于點(diǎn)G,則∠GAC=90°,可推出∠ACB=∠AGC,所以AC=AG,由(1)①可知CF⊥BD.
解答:解:(1)①CF⊥BD,CF=BD …(2分)
故答案為:垂直、相等.
②成立,理由如下:…(3分)
∵∠FAD=∠BAC=90°
∴∠BAD=∠CAF
在△BAD與△CAF中,

∴△BAD≌△CAF(SAS)(5分)
∴CF=BD,∠ACF=∠ACB=45°,
∴∠BCF=90°
∴CF⊥BD …(7分)

(2)當(dāng)∠ACB=45°時(shí)可得CF⊥BC,理由如下:…(8分)
過(guò)點(diǎn)A作AC的垂線與CB所在直線交于G      …(9分)
則∵∠ACB=45°
∴AG=AC,∠AGC=∠ACG=45°
∵AG=AC,AD=AF,
∵∠GAD=∠GAC-∠DAC=90°-∠DAC,∠FAC=∠FAD-∠DAC=90°-∠DAC,
∴∠GAD=∠FAC,
∴△GAD≌△CAF(SAS)    …(10分)
∴∠ACF=∠AGD=45°
∴∠GCF=∠GCA+∠ACF=90°
∴CF⊥BC           …(12分)
點(diǎn)評(píng):本題考查三角形全等的判定和直角三角形的判定,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定兩個(gè)三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖甲,在△ABC中,∠ACB為銳角,點(diǎn)D為射線BC上一點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.
解答下列問(wèn)題:
(1)如果AB=AC,∠BAC=90°,
①當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖乙,線段CF,BD之間的位置關(guān)系為
 
,數(shù)量關(guān)系為
 

②當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線時(shí),如圖丙,①中的結(jié)論是否仍然成立,為什么?
(2)如果AB≠AC,∠BAC≠90°,點(diǎn)D在線段BC上運(yùn)動(dòng).
試探究:當(dāng)△ABC滿足一個(gè)什么條件時(shí),CF⊥BC(點(diǎn)C,F(xiàn)重合除外)畫(huà)出相應(yīng)圖形,并說(shuō)明理由.(畫(huà)圖不寫(xiě)作法)
(3)若AC=4
2
,BC=3,在(2)的條件下,設(shè)正方形ADEF的邊DE與線段CF相交于點(diǎn)P,求線段CP長(zhǎng)的最大值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖甲,在△ABC中,∠ACB為銳角,點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.解答下列問(wèn)題:
(1)如果AB=AC,∠BAC=90°,
①當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖乙,線段CF、BD之間的位置關(guān)系為
垂直
,數(shù)量關(guān)系為
相等

②當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖丙,①中的結(jié)論是否仍然成立,為什么?
(2)如果AB≠AC,∠BAC≠90°點(diǎn)D在線段BC上運(yùn)動(dòng).試探究:當(dāng)△ABC滿足一個(gè)什么條件時(shí),CF⊥BC(點(diǎn)C、F重合除外)?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、(1)如圖甲,在△ABC中,AB=AC,AD平分∠BAC,則BD與CD相等嗎?請(qǐng)說(shuō)明理由;
(2)若將圖甲變?yōu)閳D乙,其他條件不變,則BD與CD仍相等嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖甲,在△ABC中,AB=AC,AB的垂直平分線交AB于N,交BC的延長(zhǎng)線于M,∠A=40°.
(1)求∠NMB的大小.
(2)如圖乙,如果將(1)中∠A的度數(shù)改為70°,其余條件不變,再求∠NMB的大小.
(3)根據(jù)(1)(2)的計(jì)算,你能發(fā)現(xiàn)其中的蘊(yùn)涵的規(guī)律嗎?請(qǐng)寫(xiě)出你的猜想并證明.
(4)如圖丙,將(1)中的∠A改為鈍角,其余條件不變,對(duì)這個(gè)問(wèn)題規(guī)律的認(rèn)識(shí)是否需要加以修改?請(qǐng)你把∠A代入一個(gè)鈍角度數(shù)驗(yàn)證你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖甲,在△ABC中,∠ACB為銳角.點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.如果AB=AC,∠BAC=90°.
解答下列問(wèn)題:
(1)當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖甲,線段CF、BD之間的位置關(guān)系為
垂直
垂直
,數(shù)量關(guān)系為
相等
相等

(2)當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖乙,①中的結(jié)論是否仍然成立,為什么?(要求寫(xiě)出證明過(guò)程)

查看答案和解析>>

同步練習(xí)冊(cè)答案