已知函數(shù)y=x2與y=-x+1圖象交點的橫坐標(biāo)就是一元二次方程y=x2+x-1的解,如圖,拋物線y=x2+1與雙曲線y=的交點A的橫坐標(biāo)是1,則關(guān)于x的不等式+x2+1<0的解集是   
【答案】分析:把A點的橫坐標(biāo)1代入拋物線y=x2+1,求出點A的坐標(biāo),代入y=中求的值,再求式<-x2-1的解集,確定不等式+x2+1<0的解.
解答:解:當(dāng)x=1時,y=x2+1=2,
∴A(1,2);
k=xy=1×2=2,即y=,
解方程+x2+1=0,
實際就是求出y=,與y=-x2-1,交點進(jìn)而得出<-x2-1的解集,
∵y=,與y=-x2-1,交點橫坐標(biāo)為:x=-1,
由圖象可知,不等式<-x2-1的解集就是+x2+1<0的解集,
得出:-1<x<0.
故答案為:-1<x<0.
點評:本題主要考查了二次函數(shù)與不等式的關(guān)系.關(guān)鍵是根據(jù)題意求反比例函數(shù)解析式,求出二次函數(shù)與反比例函數(shù)解析式和為0時x的值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)y1=x2與函數(shù)y2=-
1
2
x+3
的圖象大致如圖.若y1<y2,則自變量x的取值范圍是( 。
A、-
3
2
<x<2
B、x>2或x<-
3
2
C、-2<x<
3
2
D、x<-2或x>
3
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x2與y=-x+1圖象交點的橫坐標(biāo)就是一元二次方程y=x2+x-1的解,如圖,拋物線y=x2+1與雙曲線y=
k
x
的交點A的橫坐標(biāo)是1,則關(guān)于x的不等式
k
x
+x2+1<0的解集是
-1<x<0
-1<x<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•贛州模擬)已知函數(shù)y1=x2與y2=-
1
2
x+3的圖象大致如圖,若y1≤y2,則自變量x的取值范圍是
-2≤x≤
3
2
-2≤x≤
3
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x2與y=2x+3的交點為A,B(A在B的右邊).
(1)求點A、點B的坐標(biāo).
(2)求△AOB的面積.

查看答案和解析>>

同步練習(xí)冊答案