【題目】在△ABC中,AB=AC,∠BAC=100°,點(diǎn)D在BC邊上,△ABD和△AFD關(guān)于直線(xiàn)AD對(duì)稱(chēng),∠FAC的平分線(xiàn)交BC于點(diǎn)G,連接FG.
(1)求∠DFG的度數(shù);
(2)設(shè)∠BAD=θ,
①當(dāng)θ為何值時(shí),△DFG為等腰三角形;
②△DFG有可能是直角三角形嗎?若有,請(qǐng)求出相應(yīng)的θ值;若沒(méi)有,請(qǐng)說(shuō)明理由.
【答案】(1)80°;(2)①10°,25°或40°;②5°或45°.
【解析】
試題分析:(1)由軸對(duì)稱(chēng)可以得出△ADB≌△ADF,就可以得出∠B=∠AFD,AB=AF,在證明△AGF≌△AGC就可以得出∠AFG=∠C,就可以求出∠DFG的值;
(2)①當(dāng)GD=GF時(shí),就可以得出∠GDF═80°,根據(jù)∠ADG=40+θ,就有40°+80°+40°+θ+θ=180°就可以求出結(jié)論;當(dāng)DF=GF時(shí),就可以得出∠GDF=50°,就有40°+50°+40°+2θ=180°,當(dāng)DF=DG時(shí),∠GDF=20°,就有40°+20°+40°+2θ=180°,從而求出結(jié)論;
②由已知條件可以得出∠DFG=80°,當(dāng)∠GDF=90°時(shí),就有40°+90°+40°+2θ=180°就可以求出結(jié)論,當(dāng)∠DGF=90°時(shí),就有∠GDF=10°,得出40°+10°+40°+2θ=180°求出結(jié)論.
試題解析:(1)∵AB=AC,∠BAC=100°,
∴∠B=∠C=40°.
∵△ABD和△AFD關(guān)于直線(xiàn)AD對(duì)稱(chēng),
∴△ADB≌△ADF,
∴∠B=∠AFD=40°,AB=AF∠BAD=∠FAD=θ,
∴AF=AC.
∵AG平分∠FAC,
∴∠FAG=∠CAG.
在△AGF和△AGC中,
AF=AC,∠FAG=∠CAG,AG=AG,
∴△AGF≌△AGC(SAS),
∴∠AFG=∠C.
∵∠DFG=∠AFD+∠AFG,
∴∠DFG=∠B+∠C=40°+40°=80°.
答:∠DFG的度數(shù)為80°;
(2)①當(dāng)GD=GF時(shí),
∴∠GDF=∠GFD=80°.
∵∠ADG=40°+θ,
∴40°+80°+40°+θ+θ=180°,
∴θ=10°.
當(dāng)DF=GF時(shí),
∴∠FDG=∠FGD.
∵∠DFG=80°,
∴∠FDG=∠FGD=50°.
∴40°+50°+40°+2θ=180°,
∴θ=25°.
當(dāng)DF=DG時(shí),
∴∠DFG=∠DGF=80°,
∴∠GDF=20°,
∴40°+20°+40°+2θ=180°,
∴θ=40°.
∴當(dāng)θ=10°,25°或40°時(shí),△DFG為等腰三角形;
②當(dāng)∠GDF=90°時(shí),
∵∠DFG=80°,
∴40°+90°+40°+2θ=180°,
∴θ=5°.
當(dāng)∠DGF=90°時(shí),
∵∠DFG=80°,
∴∠GDF=10°,
∴40°+10°+40°+2θ=180°,
∴θ=45°
∴當(dāng)θ=5°或45°時(shí),△DFG為直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,DE∥BC,則圖中等腰三角形的個(gè)數(shù)( ).
A.1個(gè) B.3個(gè) C.4個(gè) D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知x是最小正整數(shù),y ,z是有理數(shù),且有| y﹣2|+|z+3|=0,計(jì)算:
(1)求x,y,z的值.
(2)求3x﹢y﹣z的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列四組條件中,能判定△ABC≌△DEF的是( )
A. AB=DE,BC= EF,∠A=∠D B. ∠A=∠D,∠C=∠F,AC= DE
C. ∠A=∠E,∠B=∠F,∠C=∠D D. AB=DE,BC= EF,△ABC的周長(zhǎng)等于△DEF的周長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,給出下列條件:①∠1=∠2;②∠3=∠4;③AD∥BE,且∠D=∠B;④AD∥BE;且∠BAD=∠BCD.其中,能推出AB∥DC的條件為________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為坐標(biāo)原點(diǎn),四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數(shù)y=在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn)A,與BC交于點(diǎn)F,則△AOF的面積等于( 。
A. 60 B. 80 C. 30 D. 40
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式的計(jì)算結(jié)果與x2m+2不相等的是( )
A. x2m·x2 B. xm-1·xm+3 C. x1-m·x3m+1 D. xm+2·x2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com