精英家教網 > 初中數學 > 題目詳情
如圖,已知△ADE∽△ABC,相似比為1:3,則AF:AG=( )

A.1:3
B.3:1
C.1:9
D.9:1
【答案】分析:本題可根據相似三角形的性質求解:相似三角形的對應高的比等于相似比.由于△ADE∽△ABC,且AF是△ADE的高,AG是△ABC的高,因此AF、AG的比就等于相似比.
解答:解:∵△ADE∽△ABC,且相似比為1:3,
又∵AF是△ADE的高,AG是△ABC的高,
∴AF:AG=1:3.
故選A.
點評:本題主要考查了相似三角形的性質:相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

16、如圖,已知△ADE∽△ACB,且∠ADE=∠C,則AD:AC=(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

20、填注理由:
如圖,已知∠ADE=∠B,FG⊥AB,∠EDC=∠GFB,求證:CD⊥AB
證明:因為∠ADE=∠B(已知)
所以DE∥BC(
同位角相等,兩直線平行

所以∠EDC=∠DCB(
兩直線平行,內錯角相等

因為∠EDC=∠GFB(已知)
所以∠DCB=∠GFB(
等量代換

所以FG∥CD(
同位角相等,兩直線平行

所以∠BGF=∠BDC(
兩直線平行,同位角相等

因為FG⊥AB(已知)
所以∠BGF=90°(
垂直的定義

所以∠BDC=90°(
等量代換

即CD⊥AB(
垂直的定義

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知△ADE∽△ABC,且∠AED=∠C,AD=2,AB=4,DE=1.8,求BC的長及AE:AC的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知△ADE∽△ABC,相似比為2:3,則BC:DE的值為
3:2
3:2

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知△ADE∽△ABC,且AD=3,DC=4,AE=2,則BE=
8.5
8.5

查看答案和解析>>

同步練習冊答案