【題目】已知A(m,n),且滿足m-2+(n-2)2=0,過(guò)AABy,垂足為B.

(1)A點(diǎn)坐標(biāo);

(2)如圖1,分別以AB,AO為邊作等邊ABCAOD,試判定線段ACDC的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由;

(3)如圖2,過(guò)AAEx,垂足為E,點(diǎn)F、G分別為線段OE、AE上的兩個(gè)動(dòng)點(diǎn) (不與端點(diǎn)重合),滿足∠FBG=45°,設(shè)OF=a,AG=b,FG=c,試探究的值是 否為定值?如果是,直接寫出此定值:如果不是,請(qǐng)舉例說(shuō)明.

【答案】1A2,2);(2ACCD,ACCD,理由見解析;(3定值為0,

【解析】試題分析:1)根據(jù)非負(fù)數(shù)的性質(zhì)可得m、n的值;

2)連接OC,由AB=BO知∠BAO=BOA=45°,由ABCOAD為等邊三角形知∠BAC=OAD=AOD=60°、OA=OD,繼而由∠BAC-OAC=OAD-OAC得∠DAC=BAO=45°,根據(jù)OB=CB=2OBC=30°知∠BOC=75°,AOC=BAO-BOA=30°,DOC=AOC=30°,證OAC≌△ODCAC=CD,再根據(jù)∠CAD=CDA=45°知∠ACD=90°,從而得ACCD;

3)在x軸負(fù)半軸取點(diǎn)M,使得OM=AG=b,連接BG,先證BAG≌△BOM得∠OBM=ABG、BM=BG,結(jié)合∠FBG=45°知∠ABG+OBF=45°,從而得∠OBM+OBF=45°,MBF=GBF,再證MBF≌△GBFMF=FG,即a+b=c,代入原式可得答案.

試題解析:(1)由題得m=2n=2,

A2,2);

2)如圖1,連結(jié)OC,

由(1)得AB=BO=2

∴△ABO為等腰直角三角形,

∴∠BAO=BOA=45°,

∵△ABC,OAD為等邊三角形,

∴∠BAC=OAD=AOD=60°,OA=OD

∴∠BAC-OAC=OAD-OAC

即∠DAC=BAO=45°

OBC中,OB=CB=2,OBC=30°,

∴∠BOC=75°,

∴∠AOC=BAO-BOA=30°,

∴∠DOC=AOC=30°,

OACODC中,

,

∴△OAC≌△ODC,

AC=CD,

∴∠CAD=CDA=45°,

∴∠ACD=90°,

ACCD;

3)如圖,在x軸負(fù)半軸取點(diǎn)M,使得OM=AG=b,連接BG

BAGBOM中,

∴△BAG≌△BOM

∴∠OBM=ABG,BM=BG

又∠FBG=45°

∴∠ABG+OBF=45°

∴∠OBM+OBF=45°

∴∠MBF=GBF

MBFGBF中,

,

∴△MBF≌△GBF

MF=FG

a+b=c代入原式=0

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D在邊AB上,連接CD,將△BCD沿CD翻折得到△ECD,使DE∥AC,CE交AB于點(diǎn)F,若∠B=α,則∠ADC的度數(shù)是 (用含α的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

點(diǎn)A、B在數(shù)軸上分別表示兩個(gè)數(shù)a、bA、B兩點(diǎn)間的距離記為|AB|,O表示原點(diǎn).當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A為原點(diǎn),如圖1,則|AB|=|OB|=|b|=|a-b|;當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí),

①如圖2,若點(diǎn)A、B都在原點(diǎn)的右邊時(shí),|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;

②如圖3,若點(diǎn)A、B都在原點(diǎn)的左邊時(shí),|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;

③如圖4,若點(diǎn)A、B在原點(diǎn)的兩邊時(shí),|AB|=|OB|+|OA|=|b|+|a|=-b+a=|a-b|.

回答下列問(wèn)題:

(1)綜上所述,數(shù)軸上AB兩點(diǎn)間的距離為|AB|=______.

(2)若數(shù)軸上的點(diǎn)A表示的數(shù)為3,點(diǎn)B表示的數(shù)為-4,則AB兩點(diǎn)間的距離為______;

(3)若數(shù)軸上的點(diǎn)A表示的數(shù)為x,點(diǎn)B表示的數(shù)為-2,則|AB|=______,若|AB|=3,則x的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,BAC=90°,直角∠EPF的頂點(diǎn)PBC中點(diǎn),PE,PF分別交AB,AC于點(diǎn)E,F(xiàn),給出下列四個(gè)結(jié)論:①△APE≌△CPF;AE=CF;③△EAF是等腰直角三角形;④SABC=2S四邊形AEPF,上述結(jié)論正確的有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E在AD上.

(1)求證:BE=CE;

(2)如圖2,若BE的延長(zhǎng)線交AC于點(diǎn)F,且BFAC,垂足為F,BAC=45°,原題設(shè)其它條件不變.求證:AEF≌△BCF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線a、b、c表示三條公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有_______處.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)多邊形的每一個(gè)內(nèi)角都相等,并且每個(gè)外角都等于和它相鄰的內(nèi)角的一半.

(1)求這個(gè)多邊形是幾邊形;

(2)求這個(gè)多邊形的每一個(gè)內(nèi)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=30°,AOB內(nèi)有一定點(diǎn)P,且OP=12,在OA上有一點(diǎn)Q,OB上有一點(diǎn)R,若PQR周長(zhǎng)最小,則最小周長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣ x2+bx+c與y軸交于點(diǎn)C,與x軸交于A、B兩點(diǎn)(點(diǎn)A在原點(diǎn)左側(cè),點(diǎn)B在原點(diǎn)右側(cè)),且∠ACB=90°,tan∠BAC= . ①求拋物線的解析式;
②若拋物線頂點(diǎn)為P,求四邊形APCB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案