閱讀以下材料并填空:平面上有n個點(n≥2)且任意三個點不在同一直線上,過這些點作直線一共能作出多少條不同的直線?
分析:當僅有兩個點時,可連成1條直線;當有3個點時,可連成3條直線;當有4個點時,可連成6條直線,當有5個點時可連成10條直線…
推導(dǎo):平面上有n個點,因為兩點可確定一條直線,所以每個點都可與除本身之外的其余(n-1)個點確定一條直線,即共有
n(n-1)條直線.但因AB與BA是同一條直線,故每一條直線都數(shù)了2遍,所以直線的實際總條數(shù)為
.
試結(jié)合以上信息,探究以下問題:
平面上有n(n≥3)個點,任意3個點不在同一直線上,過任意3點作三角形,一共能作出多少個不同的三角形?
分析:考察點的個數(shù)n和可作出的三角形的個數(shù) s
n,發(fā)現(xiàn):(填下表)
點的個數(shù) |
可連成的三角形的個數(shù) |
3 |
1 1 |
4 |
4 4 |
5 |
10 10 |
… |
… |
n |
|
推導(dǎo):
平面上有n個點,過不在同一直線上的三點可以確定1個三角形,取第一個點A有n種取法,取第二個點B有(n-1)種取法.取第三個點C有(n-2)種取法,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個三角形,故應(yīng)除以6,即
Sn=.
平面上有n個點,過不在同一直線上的三點可以確定1個三角形,取第一個點A有n種取法,取第二個點B有(n-1)種取法.取第三個點C有(n-2)種取法,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個三角形,故應(yīng)除以6,即
Sn=.
.