【題目】如圖,拋物線經(jīng)過,兩點(diǎn),與y軸交于點(diǎn)C,連接AB,AC,BC.
求拋物線的表達(dá)式;
求證:AB平分;
拋物線的對稱軸上是否存在點(diǎn)M,使得是以AB為直角邊的直角三角形,若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
【答案】拋物線的解析式為;證明見解析;點(diǎn)M的坐標(biāo)為或.
【解析】
將,代入拋物線的解析式得到關(guān)于a、b的方程組,從而可求得a、b的值;
先求得AC的長,然后取,則,連接BD,接下來,證明,然后依據(jù)SSS可證明≌,接下來,依據(jù)全等三角形的性質(zhì)可得到;
作拋物線的對稱軸交x軸與點(diǎn)E,交BC與點(diǎn)F,作點(diǎn)A作,作,分別交拋物線的對稱軸與、M,依據(jù)點(diǎn)A和點(diǎn)B的坐標(biāo)可得到,從而可得到或,從而可得到FM和的長,故此可得到點(diǎn)和點(diǎn)M的坐標(biāo).
將,代入得:,
解得:,,
拋物線的解析式為;
,,
,
取,則,
由兩點(diǎn)間的距離公式可知,
,,
,
,
在和中,,,,
≌,
,
平分;
如圖所示:拋物線的對稱軸交x軸與點(diǎn)E,交BC與點(diǎn)F.
拋物線的對稱軸為,則.
,,
,
,
,
,
,
同理:,
又,
,
,
點(diǎn)M的坐標(biāo)為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖題:(不寫作法,但必須保留作圖痕跡)
(1)如圖,已知點(diǎn)M.N和∠AOB,求作一點(diǎn)P,使P到點(diǎn)M.N的距離相等,且到∠AOB的兩邊的距離相等.
(2)要在河邊修建一個(gè)水泵站,分別向張村.李莊送水(如圖). 修在河邊l什么地方,可使所用水管最短?試在圖中確定水泵站的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,,D為BC的中點(diǎn),DEAB,垂足為E,過點(diǎn)B作BF//AC交DE的延長線于點(diǎn)F.
(1)求證:;
(2)連接AF,求證:AF=CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同時(shí)拋擲A,B兩個(gè)均勻的小立方體(每個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6),設(shè)兩立方體朝上的數(shù)字分別為x,y,并以此確定點(diǎn)P(x,y),那么點(diǎn)P落在直線y=-2x+9上的概率為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商家銷售一款商品,進(jìn)價(jià)每件80元,售價(jià)每件145元,每天銷售40件,每銷售一件需支付給商場管理費(fèi)5元,未來一個(gè)月按30天計(jì)算,這款商品將開展“每天降價(jià)1元”的促銷活動,即從第一天開始每天的單價(jià)均比前一天降低1元,通過市場調(diào)查發(fā)現(xiàn),該商品單價(jià)每降1元,每天銷售量增加2件,設(shè)第x天且x為整數(shù)的銷售量為y件.
直接寫出y與x的函數(shù)關(guān)系式;
設(shè)第x天的利潤為w元,試求出w與x之間的函數(shù)關(guān)系式,并求出哪一天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABF中,BE⊥AF垂足為E,AD∥BC,且AF平分∠DAB,求證:(1)FC=AD;(2)AB=BC+AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出△ABC關(guān)于軸對稱的△A1B1C1,并寫出△A1B1C1各頂點(diǎn)的坐標(biāo);
(2)將△ABC向右平移6個(gè)單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點(diǎn)的坐標(biāo);
(3)觀察△A1B1C和△A2B2C2,它們是否關(guān)于某直線對稱?若是,請用實(shí)線條畫出對稱軸。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】旋轉(zhuǎn)變換是解決數(shù)學(xué)問題中一種重要的思想方法,通過旋轉(zhuǎn)變換可以將分散的條件集中到一起,從而方便解決問題.
已知,△ABC中,AB=AC,∠BAC=α,點(diǎn)D、E在邊BC上,且∠DAE=α.
(1)如圖1,當(dāng)α=60°時(shí),將△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°到△AFB的位置,連接DF,
①求∠DAF的度數(shù);
②求證:△ADE≌△ADF;
(2)如圖2,當(dāng)α=90°時(shí),猜想BD、DE、CE的數(shù)量關(guān)系,并說明理由;
(3)如圖3,當(dāng)α=120°,BD=4,CE=5時(shí),請直接寫出DE的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com