【題目】如圖1,在平面直角坐標(biāo)系中,等腰的斜邊OB在x軸上,直線經(jīng)過等腰的直角頂點(diǎn)A,交y軸于C點(diǎn),雙曲線也經(jīng)過A點(diǎn)連接BC.
求k的值;
判斷的形狀,并求出它的面積.
若點(diǎn)P為x正半軸上一動(dòng)點(diǎn),在點(diǎn)A的右側(cè)的雙曲線上是否存在一點(diǎn)M,使得是以點(diǎn)A為直角頂點(diǎn)的等腰直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1);(2)是直角三角形,S△ABC=8;
(3)在雙曲線上存在一點(diǎn),使得是以點(diǎn)A為直角頂點(diǎn)的等腰三角形.
【解析】
(1)過點(diǎn)A分別作軸于M點(diǎn),軸于N點(diǎn),根據(jù)直角三角形的性質(zhì)可設(shè)點(diǎn)A的坐標(biāo)為,因?yàn)辄c(diǎn)A在直線上,即把A點(diǎn)坐標(biāo)代入解析式即可算出a的值,進(jìn)而得到A點(diǎn)坐標(biāo),然后再利用待定系數(shù)法求出反比例函數(shù)解析式;
(2)利用勾股定理逆定理即可判斷出三角形ABC是直角三角形,再利用三角形面積公式求解即可;
(3)由“邊角邊”易證≌,得出,那么是所求的等腰直角三角形,再根據(jù)全等三角形的性質(zhì)及函數(shù)圖象與點(diǎn)的坐標(biāo)的關(guān)系得出結(jié)果.
解:如圖1,
過點(diǎn)A分別作軸于Q點(diǎn),軸于N點(diǎn),
是等腰直角三角形,
,
設(shè)點(diǎn)A的坐標(biāo)為,
點(diǎn)A在直線上,
,
解得,
則點(diǎn)A的坐標(biāo)為,
雙曲線也經(jīng)過A點(diǎn),
;
由知,,
,
直線與y軸的交點(diǎn)為C,
,
,,
,
是直角三角形;
則S△ABC=AB·BC=;
如圖2,
假設(shè)雙曲線上存在一點(diǎn)M,使得是等腰直角三角形;
,,
連接AM,BM,
由知,,
反比例函數(shù)解析式為,
,
在和中,
,
≌,
,
,
點(diǎn)M的橫坐標(biāo)為4,
;
即:在雙曲線上存在一點(diǎn),使得是以點(diǎn)A為直角頂點(diǎn)的等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖象經(jīng)過點(diǎn)P(2,﹣3).
(1)求該函數(shù)的解析式;
(2)若將點(diǎn)P沿x軸負(fù)方向平移3個(gè)單位,再沿y軸方向平移n(n>0)個(gè)單位得到點(diǎn)P′,使點(diǎn)P′恰好在該函數(shù)的圖象上,求n的值和點(diǎn)P沿y軸平移的方向.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,P、Q分別是BC、AC上的點(diǎn),作PR⊥AB,PS⊥AC,垂足分別為R、S,若AQ=PQ,PR=PS,則下列四個(gè)結(jié)論:①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP,其中結(jié)論正確的序號(hào)為( 。
A.①②③B.①②C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=120°,∠B=40°,如果過點(diǎn)A的一條直線l把△ABC分割成兩個(gè)等腰三角形,直線l與BC交于點(diǎn)D,那么∠ADC的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開展形式多樣的陽光體育活動(dòng).某中學(xué)就“學(xué)生體育活動(dòng)興趣愛好”的問題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:
(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有 人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為 %,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有 人喜歡籃球項(xiàng)目.
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級(jí)參加校籃球隊(duì),請(qǐng)直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=24,D是BC的中點(diǎn),AC的垂直平分線EF分別交AC、AD于點(diǎn)E、F,EF = 5 .
(1)求點(diǎn)F到邊AB的距離FG的長;
(2)求 F到B點(diǎn)的距離FB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,DE是過點(diǎn)A的直線,BDDE于點(diǎn)D, CEDE 于點(diǎn) E.
(1)若BC在DE的同側(cè)(如圖所示),且AD=CE,求證:
(2)若B、C在的兩側(cè)(如圖所示 ),其他條件不變,AB與AC仍垂直嗎?若是請(qǐng)給出證明;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等邊三角形,點(diǎn)D在邊AB上.
(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;
(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想ED和EB數(shù)量關(guān)系,并加以證明;
(3)如圖3,當(dāng)點(diǎn)E在△ABC外部時(shí),EH⊥AB于點(diǎn)H,過點(diǎn)E作GE∥AB,交線段AC的延長線于點(diǎn)G,AG=5CG,BH=3.求CG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E是正方形ABCD的邊CD的中點(diǎn),AE的垂直平分線分別交AE、BC于H、G.若CG=7,則正方形ABCD的面積等于_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com