(本小題滿分11分)已知直線與軸軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)B的坐標(biāo)為(0,6)
(1)求的值和點(diǎn)A的坐標(biāo);
(2)在矩形OACB中,點(diǎn)P是線段BC上的一動(dòng)點(diǎn),直線PD⊥AB于點(diǎn)D,與軸交于點(diǎn)E,設(shè)BP=,梯形PEAC的面積為。
①求與的函數(shù)關(guān)系式,并寫出的取值范圍;
②⊙Q是△OAB的內(nèi)切圓,求當(dāng)PE與⊙Q相交的弦長(zhǎng)為2.4時(shí)點(diǎn)P的坐標(biāo)。
(2)在矩形OACB中,AC=OB=6,
BC=OA=8,∠C=90°
∴AB=
∵PD⊥AB∴∠PDB=∠C=90°
,∴∴
∴…………… 4分
又∵BC∥AE,∴△PBD∽△EAD
∴,即,
∴
∵,∴ ()……………………………6分(注:寫成不扣分)
∴ ∴在矩形GQMD中,GD=QM=1.6
∴BD=BG+GD=4+1.6=5.6,由,得
∴點(diǎn)P的坐標(biāo)為(7,6)…………………………………………………………………10分
當(dāng)PE在圓心Q的另一側(cè)時(shí),同理可求點(diǎn)P的坐標(biāo)為(3,6)………………………
綜上,P點(diǎn)的坐標(biāo)為(7,6)或(3,6).…………………………………………11分
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
(本小題滿分11分)已知直線與軸軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)B的坐標(biāo)為(0,6)
(1)求的值和點(diǎn)A的坐標(biāo);
(2)在矩形OACB中,點(diǎn)P是線段BC上的一動(dòng)點(diǎn),直線PD⊥AB于點(diǎn)D,與軸交于點(diǎn)E,設(shè)BP=,梯形PEAC的面積為。
①求與的函數(shù)關(guān)系式,并寫出的取值范圍;
②⊙Q是△OAB的內(nèi)切圓,求當(dāng)PE與⊙Q相交的弦長(zhǎng)為2.4時(shí)點(diǎn)P的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(福建泉州卷)數(shù)學(xué) 題型:解答題
(本小題滿分11分)
如圖,已知等邊三角形ABC中,點(diǎn)D,E,F(xiàn)分別為邊AB,AC,BC的中點(diǎn),M為直線
BC上一動(dòng)點(diǎn),△DMN為等邊三角形(點(diǎn)M的位置改變時(shí),△DMN也隨之整體移動(dòng)).
(1)如圖①,當(dāng)點(diǎn)M在點(diǎn)B左側(cè)時(shí),請(qǐng)你判斷EN與MF有怎樣的數(shù)量關(guān)系?點(diǎn)F與直線EN有怎樣的位置關(guān)系?都請(qǐng)直接寫出結(jié)論,不必證明或說明理由;
(2)如圖②,當(dāng)點(diǎn)M在BC上時(shí),其它條件不變,(1)的結(jié)論中EN與MF的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)利用圖②證明;若不成立,請(qǐng)說明理由;
(3)若點(diǎn)M在點(diǎn)C右側(cè)時(shí),請(qǐng)你在圖③中畫出相應(yīng)的圖形,并判斷(1)的結(jié)論中EN與MF的數(shù)量關(guān)系及點(diǎn)F與直線EN的位置關(guān)系是否仍然成立?若成立?請(qǐng)直接寫出結(jié)論,不必證明或說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com