【題目】已知在梯形ABCD中,AD // BC,AD < BC,且AD = 5,AB = DC = 2,
(1)如圖:P為AD上的一點(diǎn),滿足;
① ;
② 求AP的長
(2)如果點(diǎn)P在AD上移動(dòng)(點(diǎn)P與點(diǎn)A、D不重合),且滿足,PE交直線與BC于點(diǎn)E,同時(shí)交直線DC于點(diǎn)Q,那么
① 當(dāng)點(diǎn)Q在線段DC的延長線上時(shí),設(shè)AP = x,CQ = y,求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)的定義域;
② 當(dāng)CE = 1時(shí),寫出AP的長(不必寫出解題過程)
【答案】(1)① 見解析;② AP的長為1或4;(2)① y=3x-2(1 < x < 4);② AP的長為2.
【解析】
(1)①當(dāng)∠BPC=∠A時(shí),∠A+∠APB+∠ABP=180°,而∠APB+∠BPC+∠DPC=180°,因此∠ABP=∠DPC,此時(shí)三角形APB與三角形DPC相似.
②利用相似三角形的性質(zhì)可得出關(guān)于AP,PD,AB,CD的比例關(guān)系式,AB,CD的值題中已經(jīng)告訴,可以先用AP表示出PD,然后代入上面得出的比例關(guān)系式中求出AP的長.
(2)①與(1)的方法類似,只不過把DC換成了DQ,那么只要用DC+CQ就能表示出DQ了.然后按得出的關(guān)于AB,AP,PD,DQ的比例關(guān)系式,得出x,y的函數(shù)關(guān)系式.
②和①的方法類似,但是要多一步,要先通過平行得出三角形PDQ和CEQ相似,根據(jù)CE的長,用AP表示出PD,然后根據(jù)PD,DQ,QC,CE的比例關(guān)系用AP表示出DQ,然后按①的步驟進(jìn)行求解即可.
(1)①∵ABCD是梯形,AD∥BC,AB=DC.
∴∠A=∠D
∵∠ABP+∠APB+∠A=180°,∠APB+∠DPC+∠BPC=180°,∠BPC=∠A
∴∠ABP=∠DPC,
∴△ABP∽△DPC.
②∵△ABP∽△DPC,
∴,即:,
解得:AP=1或AP=4.
(2)①由(1)可知:△ABP∽△DPQ
∴,即:,
∴y=x2+x2(1<x<4).
②當(dāng)CE=1時(shí),
∵△PDQ∽△ECQ,
∴,即或,
∵y=x2+x2,
解得:x=2或3,
∴PA=2或3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、已兩家商場平時(shí)以同樣價(jià)格出售相同的商品,春節(jié)期間兩家商場都讓利酬賓,其中甲商場所有商品按折出售,乙商場對一次購物中超過200元后的價(jià)格部分打折. 設(shè)原價(jià)購物金額累計(jì)為元().
根據(jù)題意,填寫下表: (單位:元)
原價(jià)購物金額累計(jì)/元. | 130 | 300 | 700 | ··· |
甲商場實(shí)際購物金額/元 | 104 | 560 | ··· | |
乙商場實(shí)際購物金額/元 | 130 | 270 | ··· |
設(shè)在甲商場實(shí)際購物金額為元,在乙商場實(shí)際購物金額為元,分別寫出,關(guān)于的函數(shù)解析式;
根據(jù)題意填空:
①若在同甲商場和在乙商場實(shí)際購物花費(fèi)金額一樣多,則在同一商場所購商品原價(jià)金額累計(jì)為______元 ;
②若在同一商場購物,商品原價(jià)購物金額累計(jì)為 元,則在甲、乙.兩家商場中的 商場實(shí)際購物花費(fèi)金少.
③若在同一商場實(shí)際購物金額為元,則在甲、乙兩家商場中的_____商場商品原價(jià)購物累計(jì)金額多.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC和△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=∠EDF=90°,△EDF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合,將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q.
(1)如圖①,當(dāng)點(diǎn)Q在線段AC上,且AP=AQ時(shí),求證:△BPE≌△CQE;
(2)如圖②,當(dāng)點(diǎn)Q在線段CA的延長線上時(shí),求證:△BPE∽△CEQ;
(3)在(2)的條件下,BP=2,CQ=9,則BC的長為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小林家的洗手臺(tái)面上有一瓶洗手液(如圖1),當(dāng)手按住頂部A下壓時(shí)(如圖2),洗手液瞬間從噴口B流出,已知瓶子上部分的和的圓心分別為D,C,下部分的視圖是矩形CGHD,GH=10cm,GC=8cm,點(diǎn)E到臺(tái)面GH的距離為14cm,點(diǎn)B距臺(tái)面GH的距離為16cm,且B,D,H三點(diǎn)共線.如果從噴口B流出的洗手液路線呈拋物線形,且該路線所在的拋物線經(jīng)過C.E兩點(diǎn),接洗手液時(shí),當(dāng)手心O距DH的水平距離為2cm時(shí),手心O距水平臺(tái)面GH的高度為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將△ABC進(jìn)行位似變換得到△A1B1C1.
(1)△ABC與△A1B1C1的位似比是 .
(2)畫出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)180°得到的△A2B2C2.
(3)若點(diǎn)P(a,b)為△ABC內(nèi)一點(diǎn),求點(diǎn)P在△A2B2C2內(nèi)的對應(yīng)點(diǎn)P2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一列有理數(shù)﹣1,2,﹣3,4,﹣5,6,……,如圖所示有序排列,根據(jù)圖中的排列規(guī)律可知,“峰1”中峰頂?shù)奈恢茫?/span>C的位置)是有理數(shù)4,那么,“峰5”中C的位置是有理數(shù)___,﹣2019應(yīng)排在A、B、C、D、E中的___位置.其中兩個(gè)填空依次為( )
A. 24,C B. 24.A C. 25,B D. ﹣25,E
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮組成團(tuán)隊(duì)參加某科學(xué)比賽.該比賽的規(guī)則是:每輪比賽一名選手參加,若第一輪比賽得分滿60則另一名選手晉級(jí)第二輪,第二輪比賽得分最高的選手所在團(tuán)隊(duì)取得勝利.為了在比賽中取得更好的成績,兩人在賽前分別作了九次測試,如圖為二人測試成績折線統(tǒng)計(jì)圖,下列說法合理的是( 。
①小亮測試成績的平均數(shù)比小明的高;②小亮測試成績比小明的穩(wěn)定;③小亮測試成績的中位數(shù)比小明的高;④小亮參加第一輪比賽,小明參加第二輪比賽,比較合理.
A. ①③B. ①④C. ②③D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AB=6,BC=8,點(diǎn)E是BC邊上一點(diǎn),連接DE,把△DCE沿DE折疊,使點(diǎn)C落在點(diǎn)C′處,當(dāng)△BEC′為直角三角形時(shí),BE的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com