若平行四邊形的兩條對角線長是8cm和16cm,則這個平行四邊形的一邊長可以是( )
A.3cm
B.4cm
C.8cm
D.12cm
【答案】分析:取平行四邊形兩條對角線的一半與一邊組成三角形,利用三角形的三邊關系,可以確定出這一邊的范圍,再進一步作出判斷.
解答:解:∵平行四邊形的兩條對角線長是8cm和16cm,
∴平行四邊形兩條對角線的一半分別為4cm,8cm,
設另一邊長為x,
4<x<12,
各選項中在這個范圍內(nèi)的有8cm.
故選C.
點評:本題考查了平行四邊形的性質(zhì),即平行四邊形的對角線互相平分;解題的關鍵是利用三角形的三邊關系,確定出所求邊的長度范圍.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

有4個命題:
(1)一組對邊相等,一組對角相等的四邊形是平行四邊形;
(2)一組對邊平行,一組對角相等的四邊形是平行四邊形;
(3)O是四邊形ABCD內(nèi)一點,若AO=BO=CO=DO,則四邊形ABCD是矩形;
(4)若四邊形的兩條對角線互相垂直,則這個四邊形是菱形.
其中正確的命題個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果一條直線把一個平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個平面圖形的一條面積等分線.如:平行四邊形的一條對線所在的直線就是平行四邊形的一條面積等分線.

(1)三角形的中線、高線、角平分線分別所在的直線一定是三角形的面積等分線的有___;

(2)如圖1,梯形ABCD中,AB∥DC,如果延長DC到E,使CE=AB,連接AE,那么有S梯形ABCD=S△ADE.請你給出這個結論成立的理由,并過點A作出梯形ABCD的面積等分線(不寫作法,保留作圖痕跡);

(3)如圖,四邊形ABCD中,AB與CD不平行,S△ADC>S△ABC,過點A能否作出四邊形ABCD的面積等分線?若能,請畫出面積等分線,并給出證明;若不能,說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果一條直線把一個平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個平面圖形的一條面積等分線.如:平行四邊形的一條對線所在的直線就是平行四邊形的一條面積等分線.
(1)三角形的中線、高線、角平分線分別所在的直線一定是三角形的面積等分線的有___;
(2)如圖1,梯形ABCD中,AB∥DC,如果延長DC到E,使CE=AB,連接AE,那么有S梯形ABCD=S△ADE.請你給出這個結論成立的理由,并過點A作出梯形ABCD的面積等分線(不寫作法,保留作圖痕跡);
(3)如圖,四邊形ABCD中,AB與CD不平行,S△ADC>S△ABC,過點A能否作出四邊形ABCD的面積等分線?若能,請畫出面積等分線,并給出證明;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年高級中等學校招生全國統(tǒng)一考試數(shù)學卷(江蘇連云港) 題型:解答題

如果一條直線把一個平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個平面圖形的一條面積等分線.如:平行四邊形的一條對線所在的直線就是平行四邊形的一條面積等分線.
(1)三角形的中線、高線、角平分線分別所在的直線一定是三角形的面積等分線的有___;
(2)如圖1,梯形ABCD中,AB∥DC,如果延長DC到E,使CE=AB,連接AE,那么有S梯形ABCD=S△ADE.請你給出這個結論成立的理由,并過點A作出梯形ABCD的面積等分線(不寫作法,保留作圖痕跡);
(3)如圖,四邊形ABCD中,AB與CD不平行,S△ADC>S△ABC,過點A能否作出四邊形ABCD的面積等分線?若能,請畫出面積等分線,并給出證明;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年高級中等學校招生考試數(shù)學卷(江蘇無錫) 題型:解答題

如果一條直線把一個平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個平面圖形的一條面積等分線.如:平行四邊形的一條對線所在的直線就是平行四邊形的一條面積等分線.

(1)三角形的中線、高線、角平分線分別所在的直線一定是三角形的面積等分線的有___;

(2)如圖1,梯形ABCD中,AB∥DC,如果延長DC到E,使CE=AB,連接AE,那么有S梯形ABCD=S△ADE.請你給出這個結論成立的理由,并過點A作出梯形ABCD的面積等分線(不寫作法,保留作圖痕跡);

(3)如圖,四邊形ABCD中,AB與CD不平行,S△ADC>S△ABC,過點A能否作出四邊形ABCD的面積等分線?若能,請畫出面積等分線,并給出證明;若不能,說明理由.

 

查看答案和解析>>

同步練習冊答案