如圖,在Rt△OAB中,∠OAB=90°,且點B的坐標為(4,3).
(1)在圖中畫出△OAB繞點O逆時針旋轉90°后的△OA1B1
(2)求點B旋轉到點B1所經(jīng)過的路線長.
分析:(1)根據(jù)旋轉角度、旋轉中心及旋轉方向確定各點的對稱點,順次連接即可;
(2)根據(jù)圓形周長的
1
4
計算即可得出.
解答:解:所作圖形如下所示:

(2)由題意得:OB=OB'=5,∠BOB'=90°,
BB′
=
1
4
×10×π=
2
點評:本題考查了旋轉作圖及弧長的計算,難度不大,注意準確的作出旋轉后的圖形是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在Rt△OAB中,∠OBA=90°,且點B的坐標為(0,4).
(1)寫出點A的坐標;
(2)畫出△OAB繞點O順時針旋轉90°后的△O1A1B1;
(3)求出sin∠A1OB1的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△OAB中,∠OAB=90°,且點B的坐標為(4,2),將△OAB繞點O逆時針旋轉90°后得△精英家教網(wǎng)OA1B1
(1)在圖中作出△OA1B1并直接寫出A1,B1的坐標;
(2)求點B旋轉到點B1所經(jīng)過的路線長(結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△OAB中,∠OBA=90°,OB=AB=4,將△OAB繞點O沿逆時針方向旋轉90°得到△OA1B1
(1)線段OB1的長是
4
4
,∠A1OB的度數(shù)是
135°
135°
;
(2)連接BB1,求證:四邊形OBB1A1是平行四邊形;
(3)求四邊形OBB1A1的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2009•株洲)如圖,在Rt△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點O沿逆時針方向旋轉90°得到△OA1B1
(1)線段OA1的長是
6
6
,∠AOB1的度數(shù)是
135
135
度;
(2)連接AA1,求證:四邊形OAA1B1是平行四邊形;
(3)四邊形OAA1B1的面積.

查看答案和解析>>

同步練習冊答案