【題目】如圖,AB是⊙O的直徑,點(diǎn)C、D為半圓O的三等分點(diǎn),過(guò)點(diǎn)C作CE⊥AD,交AD的延長(zhǎng)線于點(diǎn)E.

(1)求證:CE為⊙O的切線;

(2)判斷四邊形AOCD的形狀,并說(shuō)明理由.

【答案】1)證明見試題解析;

2)四邊形AOCD是菱形;理由見試題解析

【解析】試題(1)連接AC,由題意得==DAC=CAB,即可證明AEOC,從而得出OCE=90°,即可證得結(jié)論;

2)四邊形AOCD為菱形.由=,則∠DCA=∠CAB可證明四邊形AOCD是平行四邊形,再由OA=OC,即可證明平行四邊形AOCD是菱形(一組鄰邊相等的平行四邊形是菱形);

試題解析:(1)連接AC

點(diǎn)CD是半圓O的三等分點(diǎn),

==,

∴∠DAC=∠CAB,

∵OA=OC,

∴∠CAB=∠OCA,

∴∠DAC=∠OCA,

∴AE∥OC(內(nèi)錯(cuò)角相等,兩直線平行)

∴∠OCE+∠E=180°

∵CE⊥AD,

∴∠OCE=90°,

∴OC⊥CE,

∴CE⊙O的切線;

2)四邊形AOCD為菱形.

理由是:

=,

∴∠DCA=∠CAB

∴CD∥OA,

∵AE∥OC,

四邊形AOCD是平行四邊形,

∵OA=OC

平行四邊形AOCD是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)D、E分別在△ABC的邊AB、AC上,下列給出的條件中,不能判定DE∥BC的是( 。

A. BD:AB=CE:AC B. DE:BC=AB:AD C. AB:AC=AD:AE D. AD:DB=AE:EC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓 O 的半徑為 1,過(guò)點(diǎn) A(2,0)的直線與圓 O 相切于點(diǎn) B, y 軸相交于點(diǎn) C.

(1) AB 的長(zhǎng);

(2)求直線 AB 的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,C90°AC8,BC6,點(diǎn)DAB的中點(diǎn),點(diǎn)E在邊AC上,將ADE沿DE翻折,使點(diǎn)A落在點(diǎn)A處,當(dāng)AEAC時(shí),AB_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根.

(1)求m的取值范圍;

(2)若是一元二次方程的兩個(gè)根,且,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆時(shí)針旋轉(zhuǎn)一定角度后與△ADE重合,且點(diǎn)C恰好成為AD中點(diǎn),如圖

(1)指出旋轉(zhuǎn)中心,并求出旋轉(zhuǎn)角的度數(shù).

(2)求出∠BAE的度數(shù)和AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線分別交x軸、y軸于點(diǎn)A(2,0)、B(0,4),點(diǎn)P是線段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)PPCx軸于點(diǎn)C,交拋物線于點(diǎn)D

(1)

①求拋物線的解析式;

②當(dāng)線段PD的長(zhǎng)度最大時(shí),求點(diǎn)P的坐標(biāo);

(2)當(dāng)點(diǎn)P的橫坐標(biāo)為1時(shí),是否存在這樣的拋物線,使得以B、P、D為頂點(diǎn)的三角形與AOB相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩位同學(xué)利用燈光下的影子來(lái)測(cè)量一路燈A的高度,如圖,當(dāng)甲走到點(diǎn)C處時(shí),乙測(cè)得甲直立身高CD與其影子長(zhǎng)CE正好相等,接著甲沿BC方向繼續(xù)向前走,走到點(diǎn)E處時(shí),甲直立身高EF的影子恰好是線段EG,并測(cè)得EG=2.5m.已知甲直立時(shí)的身高為1.75m,求路燈的高AB的長(zhǎng).(結(jié)果精確到0.1m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠ABC=120°,AB=10cm,點(diǎn)P是這個(gè)菱形內(nèi)部或邊上的一點(diǎn).若以P,B,C為頂點(diǎn)的三角形是等腰三角形,則P,A(P,A兩點(diǎn)不重合)兩點(diǎn)間的最短距離為______cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案