【題目】如圖,∠BEC=95°,∠ABE=120°,∠DCE=35°,則AB與CD平行嗎?請說明理由.
【答案】平行,理由見解析.
【解析】
先做輔助線延長BE,交CD于F,根據(jù)∠BEC+∠CEF=180°可得到∠CEF的度數(shù);再根據(jù)三角形內(nèi)角和定理即可得到∠BFC=60°,至此,再結(jié)合平行線的判定定理即可得到結(jié)論.
AB∥CD,理由如下:
如圖所示,延長BE,交CD于點(diǎn)F,
因?yàn)椤?/span>BEC=95°,
所以∠CEF=180°-95°=85°.
又因?yàn)椤?/span>DCE=35°,
所以∠BFC=180°-∠DCE-∠CEF=180°-35°-85°=60°.
因?yàn)椤?/span>ABE=120°(已知),
所以∠ABE+∠BFC=180°,
所以AB∥CD(同旁內(nèi)角互補(bǔ),兩直線平行).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C為一個平行四邊形的三個頂點(diǎn),且A,B,C三點(diǎn)的坐標(biāo)分別為(3,3),(6,4),(4,6).
(1)請直接寫出這個平行四邊形第四個頂點(diǎn)的坐標(biāo);
(2)求這個平行四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】荊州古城是聞名遐邇的歷史文化名城,“五一”期間相關(guān)部門對到荊州觀光游客的出行方式進(jìn)行了隨機(jī)抽樣調(diào)查,整理后繪制了兩幅統(tǒng)計圖(尚不完整).根據(jù)圖中信息,下列結(jié)論錯誤的是( )
A. 本次抽樣調(diào)查的樣本容量是5000
B. 扇形圖中的m為10%
C. 樣本中選擇公共交通出行的有2500人
D. 若“五一”期間到荊州觀光的游客有50萬人,則選擇自駕方式出行的有25萬人
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八年級(1)班研究性學(xué)習(xí)小組為研究全校同學(xué)課外閱讀情況,在全校隨機(jī)邀請了部分同學(xué)參與問卷調(diào)查,統(tǒng)計同學(xué)們一個月閱讀課外書的數(shù)量,并繪制了以下統(tǒng)計圖.
請根據(jù)圖中信息解決下列問題:
(1)共有多少名同學(xué)參與問卷調(diào)查;
(2)補(bǔ)全條形統(tǒng)計圖和扇形統(tǒng)計圖;
(3)全校共有學(xué)生1500人,請估計該校學(xué)生一個月閱讀2本課外書的人數(shù)約為多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀對人成長的影響是巨大的,一本好書往往能改變?nèi)说囊簧鐖D是某校三個年級學(xué)生人數(shù)分布的扇形統(tǒng)計圖,其中八年級人數(shù)為408人,下表是該校學(xué)生閱讀課外書籍情況統(tǒng)計表.根據(jù)圖表中的信息,可知該校學(xué)生平均每人閱讀課外書________本.
圖書種類 | 頻數(shù) | 頻率 |
科普知識 | 840 | B |
名人傳記 | 816 | 0.34 |
漫畫叢記 | A | 0.25 |
其他 | 144 | 0.06 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)E、F在直線AB上,點(diǎn)G在線段CD上,ED與FG交于點(diǎn)H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數(shù)量關(guān)系,并說明理由;
(3)若∠EHF=80°,∠D=30°,求∠AEM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】建立模型:
如圖1,已知△ABC,AC=BC,∠C=90°,頂點(diǎn)C在直線l上.
操作:
過點(diǎn)A作AD⊥l于點(diǎn)D,過點(diǎn)B作BE⊥l于點(diǎn)E.求證:△CAD≌△BCE.
模型應(yīng)用:
(1)如圖2,在直角坐標(biāo)系中,直線l1:y=x+4與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,將直線l1繞著點(diǎn)A順時針旋轉(zhuǎn)45°得到l2.求l2的函數(shù)表達(dá)式.
(2)如圖3,在直角坐標(biāo)系中,點(diǎn)B(8,6),作BA⊥y軸于點(diǎn)A,作BC⊥x軸于點(diǎn)C,P是線段BC上的一個動點(diǎn),點(diǎn)Q(a,2a﹣6)位于第一象限內(nèi).問點(diǎn)A、P、Q能否構(gòu)成以點(diǎn)Q為直角頂點(diǎn)的等腰直角三角形,若能,請求出此時a的值,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形OA1A2的直角邊OA1在y軸的正半軸上,且OA1= A1A2=1.以OA2為直角邊作第二個等腰直角三角形OA2A3,以OA3為直角邊作第三個等腰直角三角形OA3A4……依次規(guī)律得到等腰直角三角形OA2015A2016,則點(diǎn)A2015的坐標(biāo)為 __.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(7分)如圖所示,O是直線AB上一點(diǎn),∠AOC=∠BOC,OC是∠AOD的平分線.
(1)求∠COD的度數(shù).
(2)判斷OD與AB的位置關(guān)系,并說出理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com