數(shù)a,b,c,d滿足方程組
a+b+c=x
b+c+d=y
c+d+e=z
d+e+a=p
e+a+b=q
,其中x,y,z,p,q為常數(shù),且x>y>z>p>q,則a,b,c,d,e大小順序?yàn)?!--BA-->
 
分析:通過觀察方程可得:分別用方程(1)-方程(2),再用(2)-(3),用(3)-(4),用(4)-(5)即可求得a,b,c,d,e大小順序.
解答:解:(1)-(2)得:a-d>x-y>0,以a>d;
(2)-(3)得:b-e>y-z>0,以b>e;
(3)-(4)得:-a>z-p>0,所以c>a;
(4)-(5)得:d-b>p-q>0,所以d>b;
故a,b,c,d,e大小順序?yàn)閏>a>d>b>e.
點(diǎn)評(píng):解答此題的關(guān)鍵是熟知不等式的基本性質(zhì):
(1)不等式兩邊同時(shí)加或減去同一個(gè)數(shù)或式子,不等號(hào)方向不變;
(2)不等式的傳遞性,若a>b,b>c,則a>c.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、自然數(shù)4,5,5,x,y從小到大排列后,其中位數(shù)為4,如果這組數(shù)據(jù)唯一的眾數(shù)是5,那么,所有滿足條件的x,y中,x+y的最大值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、一組數(shù)據(jù)有5個(gè)自然數(shù):4、5、5、x、y,這組數(shù)據(jù)的中位數(shù)為4,唯一的眾數(shù)是5,那么,所有滿足條件的x、y中,x+y的最大值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下列材料,再解答后面的問題.
材料:一般地,n個(gè)相同因數(shù)相乘,
a•a…a
n
記為an,如23=8,此時(shí)3叫做以2為底8的對(duì)數(shù),記為log28(即log28=3
一般地,若an=b(a>0且a≠1,b>0),則n叫做以a為底b的對(duì)數(shù),記為logab(即logab=n).如34=81,4叫做以3為底81的對(duì)數(shù),記為log381=4
問題(Ⅰ)計(jì)算以下各對(duì)數(shù)的值:log24=
2
2
log216=
4
4
;log264=
6
6

(2)觀察(Ⅰ)中三數(shù)4、16、64之間滿足怎樣的關(guān)系?log24、log216、log264之間又滿足怎樣的關(guān)系?
(3)由(2)的結(jié)果,你能歸納出一個(gè)一般性的結(jié)論嗎?
logaM+logaN=
logaMN
logaMN
(a>0,且a≠1,M>0,N>0)
根據(jù)冪的運(yùn)算法則am•an=am+n以及對(duì)數(shù)的含義證明上述結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為響應(yīng)薄熙來書記建設(shè)“森林重慶”的號(hào)召,某園藝公司從2010年9月開始積極進(jìn)行植樹造林.該公司第x月種植樹木的畝數(shù)y(畝)與x之間滿足y=x+4,(其中x從9月算起,即9月時(shí)x=1,10月時(shí)x=2,…,且1≤x≤6,x為正整數(shù)).由于植樹規(guī)模擴(kuò)大,每畝的收益P(千元)與種植樹木畝數(shù)y(畝)之間存在如圖(25題圖)所示的變化趨勢(shì).
(1)根據(jù)如圖所示的變化趨勢(shì),直接寫出P與y之間所滿足的函數(shù)關(guān)系表達(dá)式;
(2)行動(dòng)實(shí)施六個(gè)月來,求該每月收益w(千元)與月份x之間的函數(shù)關(guān)系式,并求x為何值時(shí)總收益最大?此時(shí)每畝收益為多少?
(3)進(jìn)入植樹造林的第七個(gè)月,政府出臺(tái)了一項(xiàng)激勵(lì)措施:在“植樹造林”過程中,每月植樹面積與第六個(gè)月植樹面積相同的部分,按第六月每畝收益進(jìn)行結(jié)算;超出第六月植樹面積的部分,每畝收益將按第六月時(shí)每畝的收益再增加0.6m%進(jìn)行結(jié)算.這樣,該公司第七月植樹面積比第六月增加了m%.另外,第七月時(shí)公司需對(duì)前六個(gè)月種植的所有樹木進(jìn)行保養(yǎng),除去成本后政府給予每畝4m%千元的保養(yǎng)補(bǔ)貼.最后,該公司第七個(gè)月獲得種植樹木的收益和政府保養(yǎng)補(bǔ)貼共702千元.請(qǐng)通過計(jì)算,估算出m的整數(shù)值.(參考數(shù)據(jù):422=1764,432=1849,442=1936).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,若點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為a,點(diǎn)B在數(shù)軸上對(duì)應(yīng)的數(shù)為b,且a,b滿足|a+2|+(b-1)2=0.

(1)求線段AB的長;
(2)點(diǎn)C在數(shù)軸上對(duì)應(yīng)的數(shù)為x,且x是方程2x-1=
12
x+2的解,在數(shù)軸上是否存在點(diǎn)P,使PA+PB=PC,若存在,直接寫出點(diǎn)P對(duì)應(yīng)的數(shù);若不存在,說明理由;
(3)在(1)的條件下,將點(diǎn)B向右平移5個(gè)單位長度至點(diǎn)B’,此時(shí)在原點(diǎn)O處放一擋板,一小球甲從點(diǎn)A處以1個(gè)單位長度/秒的速度向左運(yùn)動(dòng);同時(shí)另一小球乙從點(diǎn)B’處以2個(gè)單位長度/秒的速度也向左運(yùn)動(dòng),在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒),求甲、乙兩小球到原點(diǎn)的距離相等時(shí)經(jīng)歷的時(shí)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案