將正方形ABCD繞點(diǎn)A按逆時(shí)針旋轉(zhuǎn)(0<n<90),得到正方形AB1C1D1,B1C1交CD于點(diǎn)E,如圖.

(1)求證:B1E=DE;

(2)簡要說明四邊形AB1ED存在一個(gè)內(nèi)切圓;

(3)若n=,AB=,求四邊形AB1ED內(nèi)切圓的半徑r.

答案:
解析:

  (1)證△AB1E≌△ADE即可

  (2)作∠D的平分線與AE的交點(diǎn)(即為內(nèi)切圓的圓心),因?yàn)樗剿倪呅蜛B1ED的四邊距離相等,故存在一個(gè)內(nèi)切圓.

  (3)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)將正方形ABCD繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)n°(0<n<90),得正方形AB1C1D1,B1C1交CD于點(diǎn)E.
(1)求證:B1E=DE;
(2)簡要說明四邊形AB1ED存在一個(gè)內(nèi)切圓;
(3)若n=30(度),AB=
3
,求四邊形AB1ED內(nèi)切圓的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),每個(gè)小方格的邊長為1個(gè)單位長度.正方形ABCD頂點(diǎn)都在格點(diǎn)上,其中,點(diǎn)A的坐標(biāo)為(1,1).
(1)若將正方形ABCD繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)90°,點(diǎn)B到達(dá)點(diǎn)B1,點(diǎn)C到達(dá)點(diǎn)C1,點(diǎn)D到達(dá)點(diǎn)D1,求點(diǎn)B1、C1、D1的坐標(biāo).
(2)若線段AC1的長度與點(diǎn)D1的橫坐標(biāo)的差恰好是一元二次方程x2+ax+1=0的一個(gè)根,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•拱墅區(qū)一模)如圖,正方形ABCD的邊長為3,將正方形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形AEFG,F(xiàn)E交線段DC于點(diǎn)Q,F(xiàn)E的延長線交線段BC于點(diǎn)P,連結(jié)AP、AQ.
(1)求證:△ADQ≌△AEQ;
(2)求證:PQ=DQ+PB;
(3)當(dāng)∠1=∠2時(shí),求PQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•三元區(qū)質(zhì)檢)把邊長為a的正方形ABCD和正方形AEFG按圖①放置,點(diǎn)B、D分別在AE、AG上,將正方形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)角α(0°<α<45°).
(1)連接BE、DG,如圖②所示,求證:BE=DG;
(2)連接AF、BD,BC交AF于P,CD交AG于Q,連接PQ,如圖③所示.
①當(dāng)PQ∥BD時(shí),求證:∠PAB=∠QAD;
②求證:旋轉(zhuǎn)過程中△PCQ的周長等于定值2a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南通一模)如圖,已知正方形ABCD的邊長為a,將正方形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°,則陰影部分的面積為( 。

查看答案和解析>>

同步練習(xí)冊答案