【題目】如果關(guān)于x的一元二次方程有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的2,那么稱這樣的方程為倍根方程”.例如,一元二次方程的兩個(gè)根是24,則方程就是倍根方程”.

(1)若一元二次方程倍根方程”,c

(2)倍根方程”,求代數(shù)式的值;

(3)若方程是倍根方程,且不同的兩點(diǎn)M(k+1,5),N(3-k,5)都在拋物線上,求一元二次方程的根.

【答案】(1)2;(2)1或;(3),.

【解析】

(1)由一元二次方程x2-3x+c=0是“倍根方程”,得到x1+2x1=3,2x12=c,即可得到結(jié)論;

(2)解方程(x-2)(mx+n)=0(m≠0)得x1=2,x2,由方程兩根是2倍關(guān)系,得到x2=143,代入解方程即可得到結(jié)論;

(3)由方程ax2+bx+c=0(a≠0)是倍根方程,得到x1=2x2,由已知條件得到得到拋物線的對稱軸x=,可得一元二次方程ax2+bx+c=0(a≠0)的根.

:(1)若一元二次方程x2-3x+c=0倍根方程,則c=2

故答案為:2;

(2)∵是倍根方程,

,

①當(dāng)時(shí),原式=

②當(dāng)時(shí),原式=

(3)∵方程是倍根方程,設(shè)

,都在拋物線上,

,∴由拋物線的對稱軸 可知:

,即,

,

的兩根分別為 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的角平分線,,分別是的高,連接.下列結(jié)論:①垂直平分;②垂直平分;③平分;④當(dāng)時(shí),,其中不正確的結(jié)論的個(gè)數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ACDE是證明勾股定理時(shí)用到的一個(gè)圖形,a、b、cRtABCRtBED邊長,易知AE=c,這時(shí)我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.

請解決下列問題

寫出一個(gè)“勾系一元二次方程”;

求證關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實(shí)數(shù)根;

x=1是“勾系一元二次方程”ax+cx+b=0的一個(gè)根,且四邊形ACDE的周長是,ABC面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線PA交O于A、B兩點(diǎn),AE是O的直徑,點(diǎn)C為O上一點(diǎn),且AC平分PAE,過C作CDPA,垂足為D.

(1)求證:CD為O的切線;

(2)若DC+DA=6,⊙O的直徑為10,求AB的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DC, AB=AC B.ADB=ADC,BD=DC

C.B=C,BAD=CAD D. B=C,BD=DC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的口袋中裝有4張卡片,卡片上分別標(biāo)有數(shù)字1、﹣2、3、﹣4,這些卡片除數(shù)字外都相同.王興從口袋中隨機(jī)抽取一張卡片,鐘華從剩余的三張卡片中隨機(jī)抽取一張,求兩張卡片上數(shù)字之積.

(1)請你用畫樹狀圖或列表的方法,列出兩人抽到的數(shù)字之積所有可能的結(jié)果.

(2)求兩人抽到的數(shù)字之積為正數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)B(0,3),點(diǎn)C(4,0)

(1)求線段BC的長.

(2)如圖1,點(diǎn)A(﹣1,0),D是線段BC上的一點(diǎn),若△BAD∽△BCA時(shí),求點(diǎn)D的坐標(biāo).

(3)如圖2,以BC為邊在第一象限內(nèi)作等邊△BCE,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與分別交于點(diǎn)和點(diǎn),與正比例函數(shù)圖象交于點(diǎn)

(1)求的值

(2)求的面積

(3)在直線上是否存在異與點(diǎn)的另一點(diǎn),使得的面積相等?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O中,直徑CD弦AB于E,AMBC于M,交CD于N,連接AD.

(1)求證:AD=AN;

(2)若AB=8,ON=1,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案