【題目】星期天,小明和爸爸去大劇院看電影.爸爸步行先走,小明在爸爸離開家一段時間后騎自行車去,兩人按相同的路線前往大劇院,他們所走的路程()和時間()的關系如圖所示,則小明追上爸爸時,爸爸共走了_____________米.

【答案】

【解析】

根據(jù)待定系數(shù)法得出解析式,利用兩直線相交的關系解答即可.

爸爸:經(jīng)過兩點(0,0),(45,3600)

設其解析式為:,

將點(45,3600)代入得:,

解得:,

爸爸所走路程所在直線的解析式為:,

小明:經(jīng)過兩點(100),(303600),

設其解析式為:,

將點(100),(303600)代入得:,

解得:,

小明所走路程所在直線的解析式為:,

聯(lián)立兩直線解析式可得:,
解得:,

∴爸爸所走路程為(米),
故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點DAC上,點EAB上,且AB=AC,BC=BD,AD=DE=EB,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AP是⊙O的切線,點A為切點,BP與⊙O交于點C,點DAP的中點,連結(jié)CD.

(1)求證:CD是⊙O的切線;

(2)若AB=2,P=30°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】每年423日是世界讀書日,某校為了解學生課外閱讀情況,隨機抽取20名學生,對每人每周用于課外閱讀的平均時間(單位:min)進行調(diào)查,過程如下:

收集數(shù)據(jù):

30

60

81

50

40

110

130

146

90

100

60

81

120

140

70

81

10

20

100

81

整理數(shù)據(jù):

課外閱讀平均時間xmin

0≤x40

40≤x80

80≤x120

120≤x160

等級

D

C

B

A

人數(shù)

3

a

8

b

分析數(shù)據(jù):

平均數(shù)

中位數(shù)

眾數(shù)

80

m

n

請根據(jù)以上提供的信息,解答下列問題:

1)填空:a  ,b m  ,n  

2)已知該校學生500人,若每人每周用于課外閱讀的平均時間不少于80min為達標,請估計達標的學生數(shù);

3)設閱讀一本課外書的平均時間為260min,請選擇適當?shù)慕y(tǒng)計量,估計該校學生每人一年(按52周計)平均閱讀多少本課外書?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)一個不透明的盒中裝有若干個除顏色外都相同的紅球與黃球.在這個口袋中先放入2個白球,再進行摸球試驗,摸球試驗的要求:先攪拌均勻,每次摸出一個球,記錄顏色后放回盒中,再繼續(xù)摸球,全班一共做了400次這樣的摸球試驗.如果知道摸出白球的頻數(shù)是40,你能估計在未放入白球前,袋中原來共有多少個小球嗎?

(2)提出問題:一個不透明的盒中裝有若干個只有顏色不一樣的紅球與黃球,怎樣估算不同顏色球的數(shù)量?

活動操作:先從盒中摸出8個球,畫上記號放回盒中.再進行摸球試驗,摸球試驗的要求:先攪拌均勻,每次摸出一個球,記錄顏色、是否有記號,放回盒中,再繼續(xù)摸球、記錄、放回袋中.

統(tǒng)計結(jié)果:摸球試驗活動一共做了50次,統(tǒng)計結(jié)果如下表:

球的類別

無記號

有記號

紅色

黃色

紅色

黃色

摸到的次數(shù)

18

28

2

2

由上述的摸球試驗推算:

盒中紅球、黃球各占總球數(shù)的百分比分別是多少?

盒中有紅球多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A(m,n)為直線y=-x+4上一動點,且滿足-4<m<4,將O點繞點B 逆時針旋轉(zhuǎn)90°得點C,連接AC,則線段AC長度的取值范圍是____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,公路 MN 和公路 PQ 在點 P 處交會,且∠QPN=30°.點 A 處有一所中學,AP=160m,一輛拖拉機從 P 沿公路 MN 前行,假設拖拉機行駛時周圍 100m 以內(nèi)會受到噪聲影響,那么該所中學是否會受到噪聲影響,請說明理由,若受影響,已知拖拉機的速度為 18km/h,那么學校受影響的時間為多長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象經(jīng)過矩形對角線的交點,分別與、相交于點、

(1)證明:面積相等;

(2)若,求的值;

(3)若四邊形面積為,求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在梯形ABCD中,AD∥BC∠ABC=90°,BC=2ADEBC的中點,連接AE、AC

1)點FDC上一點,連接EF,交AC于點O(如圖1),求證:△AOE∽△COF;

2)若點FDC的中點,連接BD,交AE與點G(如圖2),求證:四邊形EFDG是菱形.

查看答案和解析>>

同步練習冊答案