【題目】如圖1,AB為半圓的直徑,O為圓心,C為圓弧上一點(diǎn),AD垂直于過C點(diǎn)的切線,垂足為D,AB的延長線交直線CD于點(diǎn)E.
(1)求證:AC平分∠DAB;
(2)若AB=4,B為OE的中點(diǎn),CF⊥AB,垂足為點(diǎn)F,求CF的長;
(3)如圖2,連接OD交AC于點(diǎn)G,若=,求sin∠E的值.
【答案】(1)見解析;
(2)CF=;
(3)sin∠E=.
【解析】
試題分析:(1)連結(jié)OC,如圖1,根據(jù)切線的性質(zhì)得OC⊥DE,而AD⊥DE,根據(jù)平行線的性質(zhì)得OC∥AD,所以∠2=∠3,加上∠1=∠3,則∠1=∠2,所以AC平分∠DAB;
(2)如圖1,由B為OE的中點(diǎn),AB為直徑得到OB=BE=2,OC=2,在Rt△OCE中,由于OE=2OC,根據(jù)含30度的直角三角形三邊的關(guān)系得∠OEC=30°,則∠COE=60°,由CF⊥AB得∠OFC=90°,所以∠OCF=30°,再根據(jù)含30度的直角三角形三邊的關(guān)系得OF=OC=1,CF=OF=;
(3)連結(jié)OC,如圖2,先證明△OCG∽△DAG,利用相似的性質(zhì)得==,再證明△ECO∽△EDA,利用相似比得到==,設(shè)⊙O的半徑為R,OE=x,代入求得OE=3R;最后在Rt△OCE中,根據(jù)正弦的定義求解.
試題解析:(1)連結(jié)OC,如圖1,∵DE與⊙O切于點(diǎn)C,∴OC⊥DE,
∵AD⊥DE,∴OC∥AD,∴∠2=∠3,∵OA=OC,∴∠1=∠3,
∴∠1=∠2,
即AC平分∠DAB;
(2)如圖1,
∵直徑AB=4,B為OE的中點(diǎn),
∴OB=BE=2,OC=2,
在Rt△OCE中,OE=2OC,
∴∠OEC=30°,
∴∠COE=60°,∵CF⊥AB,∴∠OFC=90°,∴∠OCF=30°,∴OF=OC=1,CF=OF=;
(3)連結(jié)OC,如圖2,∵OC∥AD,∴△OCG∽△DAG,∴==,∵OC∥AD,
∴△ECO∽△EDA,∴==,設(shè)⊙O的半徑為R,OE=x,∴=,解得OE=3R,
在Rt△OCE中,sin∠E===.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某車間有26名工人,每人每天可以生產(chǎn)800個(gè)螺釘或1 000個(gè)螺母,1個(gè)螺釘需要配2個(gè)螺母,為使每天生產(chǎn)的螺釘和螺母剛好配套.設(shè)安排x名工人生產(chǎn)螺釘,則下面所列方程正確的是( )
A. 2×1 000(26-x)=800x B. 1 000(13-x)=800x
C. 1 000(26-x)=2×800x D. 1 000(26-x)=800x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請寫出一個(gè)圖象從左向右上升且經(jīng)過點(diǎn)(﹣1,2)的函數(shù),所寫的函數(shù)表達(dá)式是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com