若點(diǎn)A在數(shù)軸上對(duì)應(yīng)的有理數(shù)為-2,那么與A點(diǎn)相距5個(gè)單位長度的點(diǎn)所對(duì)應(yīng)的有理數(shù)是________.

3或-7
分析:此題可借助數(shù)軸用數(shù)形結(jié)合的方法求解:由于點(diǎn)A與原點(diǎn)0的距離為2,那么A應(yīng)有兩個(gè)點(diǎn),記為A1,A2,分別位于-2兩側(cè),不妨設(shè)A1點(diǎn)在-2的左側(cè),A2在-2的右側(cè),由此借助數(shù)軸解決問題.
解答:如圖距離-2相距5個(gè)單位長度的點(diǎn)A1在-2的左側(cè)為A1=-7;
A2在-2的右側(cè)為A2=3.

故答案為:-7或3.
點(diǎn)評(píng):本題考查借助數(shù)軸,根據(jù)兩點(diǎn)之間的距離來求得數(shù)軸上的點(diǎn),注意分類討論思想的滲透.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

若點(diǎn)A在數(shù)軸上對(duì)應(yīng)的有理數(shù)為-2,那么與A點(diǎn)相距5個(gè)單位長度的點(diǎn)所對(duì)應(yīng)的有理數(shù)是
3或-7
3或-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,若點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為a,點(diǎn)B在數(shù)軸上對(duì)應(yīng)的數(shù)為b,且a,b滿足|a+2|+(b-1)2=0.

(1)求線段AB的長;
(2)點(diǎn)C在數(shù)軸上對(duì)應(yīng)的數(shù)為x,且x是方程2x-1=
12
x+2的解,在數(shù)軸上是否存在點(diǎn)P,使PA+PB=PC,若存在,直接寫出點(diǎn)P對(duì)應(yīng)的數(shù);若不存在,說明理由;
(3)在(1)的條件下,將點(diǎn)B向右平移5個(gè)單位長度至點(diǎn)B’,此時(shí)在原點(diǎn)O處放一擋板,一小球甲從點(diǎn)A處以1個(gè)單位長度/秒的速度向左運(yùn)動(dòng);同時(shí)另一小球乙從點(diǎn)B’處以2個(gè)單位長度/秒的速度也向左運(yùn)動(dòng),在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒),求甲、乙兩小球到原點(diǎn)的距離相等時(shí)經(jīng)歷的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,若點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為a,點(diǎn)B在數(shù)軸上對(duì)應(yīng)的數(shù)為b,且a,b滿足|a+2|+(b-1)2=0.

(1)求線段AB的長;
(2)點(diǎn)C在數(shù)軸上對(duì)應(yīng)的數(shù)為x,且x是方程2x-1=數(shù)學(xué)公式x+2的解,在數(shù)軸上是否存在點(diǎn)P,使PA+PB=PC,若存在,直接寫出點(diǎn)P對(duì)應(yīng)的數(shù);若不存在,說明理由;
(3)在(1)的條件下,將點(diǎn)B向右平移5個(gè)單位長度至點(diǎn)B’,此時(shí)在原點(diǎn)O處放一擋板,一小球甲從點(diǎn)A處以1個(gè)單位長度/秒的速度向左運(yùn)動(dòng);同時(shí)另一小球乙從點(diǎn)B’處以2個(gè)單位長度/秒的速度也向左運(yùn)動(dòng),在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒),求甲、乙兩小球到原點(diǎn)的距離相等時(shí)經(jīng)歷的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,若點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為a,點(diǎn)B在數(shù)軸上對(duì)應(yīng)的數(shù)為b,

a,b滿足|a+2|+(b-1)2=0.                     

(1)求線段AB的長;                      

                                                  

0    1

   (2)點(diǎn)C在數(shù)軸上對(duì)應(yīng)的數(shù)為x,且x是方程2x-1= x+2的解,在數(shù)軸上是否存在點(diǎn)P,使PA+PB=PC,若存在,直接寫出點(diǎn)P對(duì)應(yīng)的數(shù);若不存在,說

明理由;

(3)在(1)的條件下,將點(diǎn)B向右平移5個(gè)單位長度至點(diǎn)B’,此時(shí)在原點(diǎn)O處放一擋板,一小球甲從點(diǎn)A處以1個(gè)單位長度/秒的速度向左運(yùn)動(dòng);同時(shí)另一小球乙從點(diǎn)B’處以2個(gè)單位長度/秒的速度也向左運(yùn)動(dòng),在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒),求甲、乙兩小球到原點(diǎn)的距離相等時(shí)經(jīng)歷的時(shí)間.

 


                

0    1

查看答案和解析>>

同步練習(xí)冊(cè)答案