精英家教網 > 初中數學 > 題目詳情

如圖,在四邊形ABCD中,AC是∠DAE的平分線,DA∥CE,∠AEB=∠CEB.求證:AB=CB.

證明:∵AC是∠DAE的平分線,
∴∠EAC=∠DAC,
又已知DA∥CE,
∴∠ECA=∠DAC,
∴∠EAC=∠ECA,
∴AE=CE,
在△AEB和△CEB中
,
∴△AEB≌△CEB,
∴AB=CB.
分析:由已知AC是∠DAE的平分線可推出∠EAC=∠DAC,由DA∥CE可推出∠ECA=∠DAC,所以得到∠EAC=∠ECA,則AE=CE,又已知,
∠AEB=∠CEB,BE=BE,因此△AEB≌△CEB,故AB=CB.
點評:此題考查的知識點是平行線的性質、全等三角形的判定和性質,解答此題的關鍵是由已知先證明∠EAC=∠ECA,AE=CE,
再證明△AEB≌△CEB.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值,如果不能,說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結AD、AE、CD,則下列結論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數學 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習冊答案