如圖,已知小正方形ABCD的面積為1,把它的各邊延長一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1邊長按原法延長一倍得到正方形A2B2C2D2;以此下去…,則正方形A4B4C4D4的面積為______.
最初邊長為1,面積1,
延長一次為
5
,面積5,
再延長為51=5,面積52=25,
下一次延長為5
5
,面積53=125,
以此類推,
當(dāng)N=4時,正方形A4B4C4D4的面積為:54=625.
故答案為:625.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

四邊形ABCD的對角線AC、BD相交于點O,能判定它是正方形的條件是( 。
A.OA=OB=OC=OD、AC⊥BDB.OA=OB=OC=OD
C.OA=OC、OB=OC、AC⊥BDD.OA=OC、OB=OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,在正方形ABCD中,點P是CD上一動點,連接PA,分別過點B,D作BE⊥PA,DF⊥PA,垂足分別為E,F(xiàn).
(1)求證:BE-DF=EF;
(2)如圖②,若點P在DC的延長線上,其余條件不變,則BE,DF,EF有怎樣的數(shù)量關(guān)系______(不用證明)
(3)如圖③,若點P在CD的延長線上,其余條件不變,畫出圖形,寫出此時BE,DF,EF之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

△ABC是一張等腰直角三角形紙板,∠C=90°,AC=BC=2,
(1)要在這張紙板中剪出一個盡可能大的正方形,有甲、乙兩種剪法(如圖1),比較甲、乙兩種剪法,哪種剪法所得的正方形面積大?請說明理由.
(2)圖1中甲種剪法稱為第1次剪取,記所得正方形面積為s1;按照甲種剪法,在余下的△ADE和△BDF中,分別剪取正方形,得到兩個相同的正方形,稱為第2次剪取,并記這兩個正方形面積和為s2(如圖2),則s2=______;再在余下的四個三角形中,用同樣方法分別剪取正方形,得到四個相同的正方形,稱為第3次剪取,并記這四個正方形面積和為s3,繼續(xù)操作下去…,則第10次剪取時,s10=______;
(3)求第10次剪取后,余下的所有小三角形的面積之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點E、F在正方形ABCD的邊AB、BC上,BE=CF,若CE=10cm,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)學(xué)課上,李老師出示了這樣一道題目:如圖1,正方形ABCD的邊長為12,P為邊BC延長線上的一點,E為DP的中點,DP的垂直平分線交邊DC于M,交邊AB的延長線于N.當(dāng)CP=6時,EM與EN的比值是多少?
經(jīng)過思考,小明展示了一種正確的解題思路:過E作直線平行于BC交DC,AB分別于F,G,如圖2,則可得:
DF
FC
=
DE
EP
,因為DE=EP,所以DF=FC.可求出EF和EG的值,進而可求得EM與EN的比值.
(1)請按照小明的思路寫出求解過程.
(2)小東又對此題作了進一步探究,得出了DP=MN的結(jié)論,你認為小東的這個結(jié)論正確嗎?如果正確,請給予證明;如果不正確,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形OABC的邊長為1,點P在AB上,∠AOP=30°,OP的延長線交CB的延長線于點Q,求PA和BQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖正方形ABCD中,E為CD邊上一點,F(xiàn)為BC延長線上一點,且CE=CF
(1)求證:△BCE≌△DCF;
(2)若∠FDC=30°,求∠BEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知一個正方形的對角線長為4,則此正方形的面積為______.

查看答案和解析>>

同步練習(xí)冊答案